Here are the slides from from my keynote at the 8th International Conference on Education and E-Learning in Tokyo yesterday. Sadly I was not actually in Tokyo for this but the online integration was well done and there was some good audience interaction. I am also the conference chair (an honorary title) so I may be a bit biased, but I think it’s a really good conference, with an increasingly rare blend of both the tech and the pedagogical aspects of the field, and some wonderfully diverse keynotes ranging in subject matter from the hardest computer science to reflections on literature and love (thanks to its collocation with ICLLL, a literature and linguistics conference). My keynote was somewhere in between, and deliberately targeted at the conference theme, “Transformative Learning in the Digital Era: Navigating Innovation and Inclusion.”
As my starting point for the talk I introduced the concept of the technological connectome, about which I have just written a paper (currently under revision, hopefully due for publication in a forthcoming issue of the new Journal of Open, Distance, and Digital Education), which is essentially a way of talking about extended cognition from a technological rather than a cognitive perspective. From there I moved on to the adjacent possible and the exponential growth in technology that has, over the past century or so, reached such a breakneck rate of change that innovations such as generative AI, the transformation I particularly focused on (because it is topical), can transform vast swathes of culture and practice in months if not in weeks. This is a bit of a problem for traditional educators, who are as unprepared as anyone else for it, but who find themselves in a system that could not be more vulnerable to the consequences. At the very least it disrupts the learning outcomes-driven teacher-centric model of teaching that still massively dominates institutional learning the world over, both in the mockery it makes of traditional assessment practices and in the fact that generative AIs make far better teachers if all you care about are the measurable outcomes.
The solutions I presented and that formed the bulk of the talk, largely informed by the model of education presented in How Education Works, were mostly pretty traditional, emphasizing the value of community, and of passion for learning, along with caring about, respecting, and supporting learners. There were also some slightly less conventional but widely held perspectives on assessment, plus a bit of complexivist thinking about celebrating the many teachers and acknowledging the technological connectome as the means, the object and the subject of learning, but nothing Earth-shatteringly novel. I think this is as it should be. We don’t need new values and attitudes; we just need to emphasize those that are learning-positive rather than the increasingly mainstream learning-negative, outcomes-driven, externally regulated approaches that the cult of measurement imposes on us.
Post-secondary institutions have had to grapple with their learning-antagonistic role of summative assessment since not long after their inception so this is not a new problem but, until recent decades, the two roles have largely maintained an uneasy truce. A great deal of the impetus for the shift has come from expanding access to PSE. This has resulted in students who are less able, less willing, and less well-supported than their forebears who were, on average, far more advantaged in ability, motivation, and unencumbered time simply because fewer were able to get in. In the past, teachers hardly needed to teach. The students were already very capable, and had few other demands on their time (like working to get through college), so they just needed to hang out with smart people, some of whom who knew the subject and could guide them through it in order to know what to learn and whether they had been successful, along with the time and resources to support their learning. Teachers could be confident that, as long as students had the resources (libraries, lecture notes, study time, other students) they would be sufficiently driven by the need to pass the assessments and/or intrinsic interest, that they could largely be left to their own devices (OK, a slight caricature, but not far off the reality).
Unfortunately, though this is no longer even close to the norm, it is still the model on which most universities are based. Most of the time professors are still hired because of their research skills, not teaching ability, and it is relatively rare that they are expected to receive more than the most perfunctory training, let alone education, in how to teach. Those with an interest usually have opportunities to develop their skills but, if they do not, there are few consequences. Thanks to the technological connectome, the rewards and punishments of credentials continue to do the job well enough, notwithstanding the vast amounts of cheating, satisficing, student suffering, and lost love of learning that ensues. There are still plenty of teachers: students have textbooks, YouTube tutorials, other students, help sites, and ChatGPT, to name but a few, of which there are more every day. This is probably all that is propping up a fundamentally dysfunctional system. Increasingly, the primary value of post-secondary education comes to lie in its credentialling function.
No one who wants to teach wants this, but virtually all of those who teach in universities are the ones who succeeded in retaining their love of learning for its own sake despite it, so they find it hard to understand students who don’t. Too many (though, I believe, a minority) are positively hostile to their students as a result, believing that most students are lazy, willing to cheat, or to otherwise game the system, and they set up elaborate means of control and gotchas to trap them. The majority who want the best for their students, however, are also to blame, seeing their purpose as to improve grades, using “learning science” (which is like using colour theory to paint – useful, not essential) to develop methods that will, on average, do so more effectively. In fairness, though grades are not the purpose, they are not wrong about the need to teach the measurable stuff well: it does matter to achieve the skills and knowledge that students set out to achieve. However, it is only part of the purpose. Mostly, education is a means to less measurable ends; of forming identities, attitudes, values, ways of relating to others, ways of thinking, and ways of being. You don’t need the best teaching methods to achieve that: you just need to care, and to create environments and structures that support stuff like community, diversity, connection, sharing, openness, collaboration, play, and passion.
The keynote was recorded but I am not sure if or when it will be available. If it is released on a public site, I will share it here.
Sounds like a fantastic keynote tackling the thorny issues of education in the digital age – kinda like if Mr. Miyagi met the Matrix and decided to open a coding dojo. Glad to hear the tech and pedagogy blended so well! 💻📚
I love that description! If I’d known that was what I was aiming for my aim would have been truer, but I’m happy that’s how it turned out.