A few thoughts on learning management systems, and on integrated learning environments and their implementation

Why do we build digital learning systems to mimic classrooms?

It is understandable that, when we teach in person, we have to occupy and make different uses of the same or similar environments like classrooms, labs, workshops, lecture theatres, and offices. There are huge financial, physical, and organizational constraints on making the environment fit the task, so it would be madness to build a whole new classroom every time we wished to run a different class.

Online, we could build anything we like

But why do we do the same when we teach online? There are countless tools available and, if none are suitable, it is not too hard to build them or modify them to suit our needs. Once they are built, moving between them just takes a tap of a screen or the click of a mouse. Heck, you can even occupy several of them at once if you have a decent monitor or more than one device.

So why don’t we do this?

Here are a few of the more obvious reasons that using the perfect app for the context of study rarely happens:

  • Teachers’ lack of knowledge of the options (it takes time and effort to discover what’s available).
  • Teachers’ lack of skill in using them (most interesting tools have a learning curve, and that gets steeper in inverse proportion to the softness and diversity of the toolset, so most teachers don’t even know how to make the most of what they already have).
  • Lack of time and/or money for development (a real-life application is what it contains, not just the shell that contains it, and it is not always as easy to take existing stuff and put it in a new tool as it might be in a physical space).
  • Costs and difficulties in management (each tool adds costs in managing faults, configuration, accounting for use, performance, and security).
  • Cognitive load involved for learners in adapting to the metaphors, signposts, and methods needed to use the tool itself.

All of these are a direct consequence of the very diversity that would make us want to use different apps in the first place. This is a classic Faustian bargain in which the technology does what we want, and in the process creates new problems to solve.  Every virtual system invents at least some of the dynamics of how people and things interact with it and within it. In effect, every app has its own physics. That makes them harder to find out about, harder to learn, harder to develop, costlier to manage, and more difficult to navigate than the static, fixed facilities found in particular physical locations. They are all different, there are few if any universals, and any universal today may become a conditional tomorrow. Gravity doesn’t necessarily work the same way in virtual systems.

image of a pile of containersAnd so we get learning management systems

The learning management system (LMS) kind of deals with all of these problems: poorly, harmfully, boringly, and painfully, but it does deal with them. Currently, most of the teaching at Athabasca University is through the open source Moodle LMS, lightly modified by us because our needs are not quite like others (self-pacing and all that). But Moodle is not special: in terms of what it does and how it does it, it is not significantly different from any other mainstream LMS – Blackboard, Brightspace, Canvas, Sakai, whatever.

Almost every LMS essentially automates the functions, though not exactly the form, of traditional classrooms. In other parts of the world people prefer to use the term ‘managed learning environment’ (MLE) for such things, and it is the most dominant representative of a larger category of systems usually described as virtual learning environments (VLEs) that also includes things like MOOs (multi-user dungeons, object oriented), immersive learning environments, and simpler web-based teaching systems that replicate aspects of classrooms such as Google Classroom or Microsoft’s gnarly bundle of hastily repurposed rubbish for teaching that I’m not sure even has a name yet. Notice the spatial metaphors in many of these names.

Little boxes made of ticky tacky

The people who originally designed LMSs back in the 90s (I did so myself) based their designs on the functions and entities found in a traditional university because that was their context, and that was where they had to fit. Metaphorically, an LMS or MLE is a big university building with rather uniform classrooms, with perhaps a yard where you can camp out with a few other systems (plugins, LTI hooks, etc) that conform to its requirements and that are allowed in to classrooms when invited, and a few doors and gateways (mainly hyperlinks) linking it circuitously or in jury-rigged fashion to other similarly weakly connected buildings (e.g. places to register, places to seek support, places to talk to an advisor, places to complain, places to find books, and so on). It doesn’t have metaphorical corridors, halls, common rooms, canteens, yards, libraries or any of the other things that normally make up a physical university. You rarely get to even be aware of other classrooms beyond those you are in. Some people (me in a past life) might give classrooms cute names like ‘the learning cafe’ but it’s still just another classroom. You teleport from one classroom to the next because what happens in corridors (really a big lot of incredibly important pedagogically useful stuff, as it happens) is not perceived by the designers as a useful classroom function to be automated or perhaps, more charitably, they just couldn’t figure out how to automate that.

Reified roles

It’s a very controlled environment where everyone has a programmatically enforced role (mostly reflecting traditional educational roles), that may vary according to the room, but that are far less fluid than those in physical spaces. There are strong hierarchies, and limited opportunities for moving between them. Some of those hierarchies are new: the system administrator, for instance, has way more power than anyone in a physical university to determine how learning happens, like an architect with the power to move walls, change the decor, add extensions, and so on, at will. The programmers of the system are almost god-like in their command of its physics. But the ways that they give teachers (or learning designers, or administrators) control, as designers, directors, and regulators of the classroom, are perhaps the most pernicious. In a classroom a teacher may lead (and, by default, usually does). In an LMS, a teacher (or someone playing that role) must lead. The teacher sees things that students cannot, and controls things that the students may not. A teacher configures the space, and determines with some precision how it will be used. With a lot of effort and risk, it can be made to behave differently, but it almost never is.

Functions are everything

An LMS is typically built along functional lines, and those functions are mostly based on loose, superficial observations of what teachers and students seem to do in physical classrooms. The metaphorical classrooms are weird, because they are structured by teaching (seldom learning) function rather than along pedagogical lines: for instance, if you want to talk with someone, you normally need to go to a separate enclosed area inside the classroom or leave a note on the teacher’s desk. Same if you want to take a test, or share your work with others. Another function, another space. Some have many little rooms for different things. Lectures are either literally that (video recordings) or (more usefully, from a learning perspective), text and images to be read on screen, based on the assumption that the only function of lectures is information transmission (it is so very, very much not – that’s its least useful and least effective role). There’s seldom a chance to put even put up your hand to question something. Notices can usually only be pinned on the wall by teachers. Classroom timetables are embodied in software because of course you need a rigid and unforgiving timetable in a medium that sells itself on enabling learning anywhere, any time. Some, including Moodle, will allow you to break up the content differently, but it’s still another timetable; just a timetable without dates. It’s still the teacher who sets the order, pacing and content.

Robot overlords

It’s a high-tech classroom. There are often robots there that are programmed to make you behave in ways determined by those higher in the hierarchy (sometimes teachers, sometimes administrators, sometimes the programmers of the software). For instance, they might act as gatekeepers that prevent you from moving on to the next section before completing the current one, or they might prevent you submitting work before or after a specified date. They might mark your work. There are surveillance cameras everywhere, recording your every move, often only accessible to those with more powerful roles (though sometimes a robot or two might give you a filtered view of it).

Beginnings and ends

You can’t usually go back and visit when your course is over because someone decided it would be a good idea to set opening and closing enrolment dates and assumed that, when they were done, the learning was done (which of course it never is – it keeps on evolving long after explicit teaching and testing occurred). Again, it’s because physical classes are scheduled and terms come to an end because they must be, not because it makes pedagogical sense. And, like almost everything, you can override this default, but hardly anyone ever does, because it brings back those Faustian bargains, especially in manageability.

Dull caricatures of physical spaces

Basically, the LMS is an automated set of metaphorical classrooms that hardens many of the undesirable by-products of educational systems in software in brain-dead ways that have little to do with how best to teach, and that stretch the spatial metaphors that inform it beyond breaking point. Each bit of automation and each navigational decision hardens pedagogical choices. For all the cozy metaphors, programmers invent rather than replicate physics, in the process warping reality in ways that do no good and much harm. Classrooms solved problems of physics for in-person teaching and form part of a much larger structure that has evolved to teach reasonably well (including corridors, common rooms, canteens, and libraries, as it happens). Their more visible functions are only a part of that and, arguably, not the main part. There is much pedagogy embedded in the ways that physical universities, whether by accident or design, have evolved over centuries to support learning in every quadrangle and nook of a coffee shop. LMSs just focus on a limited subset of teaching roles, and empower the teacher in ways that caricature their already excessive dominance in the classroom (which only occurred because it had to, thanks to physics and the constraints it imposed).

LMSs are crap, but they contain recognizable semblances of their physical counterparts and just enough configurability and flexibility to more or less work as teaching tools, a bit, for everyone, almost no matter what their level of digital proficiency might be. They more or less solve the Faustian bargains listed earlier, but they do so by stifling what we wanted and should have been able to do in the first place with online tools, in the process creating new and quite horrific problems, as well as demolishing most of what makes physical universities work in the first place. It never has been true that virtual learning environments are learning environments – they are only ever parts of them – and there are places to escape from them, such as the Landing, other virtual systems, or even just plain old email, but then all those Faustian bargains come back to haunt us again. There has to be a better way.

Beyond the LMS

Cognisant of the issues, Athabasca University is now some way down the path to developing its own distinctive solutions to these problems, in a multi-year multi-million-dollar initiative known as (following the spatial metaphor) the Integrated Learning Environment (ILE). The ILE is not an application. It is an umbrella term for a lot of different, usually independent systems working together as one. Though some of the most interesting opportunities are still only loosely imagined, perhaps because they cause problems that are fiendishly hard to solve (e.g. how can we integrate systems that we build ourselves without creating risks for the rest of the ILE, and what happens when they need to be maintained?) a lot of progress is being made on the non-teaching foundations on which the rest depends (student admin systems, support tools, procedures, etc), as well as on the most visible and perhaps the biggest of its parts, BrightSpace, a proprietary commercial LMS that is meant to replace Moodle, for no obvious pedagogical or technical reasons (it’s no better). It might make economic sense. I don’t know, but I do know that open source software typically costs a fair bit to own, albeit because of the things that make it a much better idea (freedom, flexibility, ownership, etc). There is probably a fair bit of time and money being spent with Desire2Learn (makers of Brightspace) on the things that we spent a fair bit of time and money on many years ago to make Moodle a bit less classroom-like. The choice no doubt has something to do with how reliably and easily it can be made to work with some of the other proprietary commercial systems that someone has decided will make up the ILE. It bothers me greatly that we are not trying hard to choose open source solutions, for reasons that will become clearer in the rest of this post. However, (pedagogically speaking) all the mainstream LMSs are much of a muchness, making the same mistakes as one another in very similar ways, so it probably won’t wreck too much of what we already do within Moodle. But, on its own, it won’t move us much further forward and we could do it better. That’s what the ILE is supposed to do – to make the LMS just a part of a much larger teaching environment, intimately connected with the rest of what the university does for or with students, and extensible with new and better ways of learning, teaching, and assessing learning.

picture of lego bricksLego bricks make poor metaphors

When we were first imagining the ILE, though the approach was admirably participative, engaging much of the university community, I was very worried by the things we were encouraged to focus on. It was all about the functionality, the usability, the design, the tools, the pedagogies, the business systems that supported them. Those things matter, for sure, and should be not be ignored, but they should and will change and grow all the time: in fact, part of the point of building this thing is to do just that. Using the city metaphor, pretty much all that we (collectively) considered were the spaces (the rooms, mainly), and the stuff that goes on inside them, much like LMS designers thought of universities as just collections of classrooms in which teaching functions were performed. Space and stuff are, not uncoincidentally, exactly what Stewart Brand identified long ago as inevitably being the fastest-changing, most volatile parts of any town or city (after site, structure, skin, and services). I’ve written a fair bit on the universality of this principle across all systems. It’s a solid structural principle that applies as much to ecosystems and educational systems as to cities. As Brand observes himself, drawing from O’Neill et al (1986), the larger, slower-changing elements of any system affect the smaller, faster-changing more than vice versa. This is for much the same reasons that path dependencies set in. It’s about the prior providing the context for what follows. Flexible things have to fit into the gaps left by less flexible, older, pre-existing things. In physical spaces, of course these tend to be bigger and/or slower, but the same is true in virtual spaces, where size seldom matters that much, but hardness (inflexibility, brittleness) really does. Though lip service was paid to the word ‘integrated’ in our discussions,  I had the strong feeling that the kind of integration we had in mind was that of a Lego set. In fact, I think we were aiming to find a ‘Lego Athabasca University’ set, with assembly instructions and a picture on the box. The vendors who came to talk with us made much of how effectively they could do that, rather than how effectively they could make it possible for others to do that.

Metaphors matter. Lego bricks have to fit together tightly, in pre-specified ways, especially if you are following a plan. If you want to move them around, you have to dismantle a bit of the structure to fit them in. It’s difficult to integrate things that are not bricks, or that are made by different toy companies to work in different ways. At best you get what Brand calls ‘magazine architecture’, or ‘no road’ architecture, beautiful, fit for purpose, intricate and solid, but slow to learn. Lego is not a terrible way to build, compared with buying everything pre-assembled, but it could be improved.

Signals and boundaries

Drawing inspiration from John Holland’s brilliant last work, Signals & Boundaries, I tried to make the case that, instead, we should be focusing on the boundaries (the interfaces between the buildings and the rest of the city), and the signals that pass between them (the people, the messages, etc, the forms they take and how they move around). In Brand’s terms, I wanted us to be thinking about skin and services, and perhaps even structure, though site – Athabasca University – was a given. Though a few people nodded in agreement, I think it mainly fell on deaf ears. We wanted oven-ready solutions, not the infrastructure to enable those solutions. Though the city metaphor works well, because we are talking about human constructions, others would result in similar ways of thinking: cells in bodies, organisms in ecosystems, brains, termite mounds, and so on. All are organized by boundaries (at many levels of hierarchy) and the signals that pass between them.

The Lego set metaphor – whether deliberately or not – seems to have prevailed for now. A lot of old buildings are being slated for demolition and a lot of new virtual buildings are now being erected as part of this development, many of them chosen not because of problems with existing buildings but so that they can more easily connect together and live in the same cloud. This will very likely work, for now, but it is not cheap and it is not flexible, especially given the fact that most of it is not open so, like a rental property, we are not allowed to fix things, add utilities, change the walls, etc, and we are wholly dependent on the landlords being nice to us and each other (knowing that some – ahem, Microsoft – have a long history of abusing their tenants). Those buildings will age. We will find them cramped. Some will age faster than others, and will have to be modified to keep up, perhaps at high cost. Companies renting them might go out of business or change their terms so we might have to demolish the buildings and rent/make new ones. We will be annoyed at how they do things, usually without asking us. We will hate the landlords who dictate what we can do and how we can do it, and who will keep upping the rent while not doing what we ask. We will want more, and the only way to get it will be to build extensions, buy new brick sets, if it is not enough to pay someone to remodel the interiors (and it won’t be). Of course, because most of the big structural elements will not be open source, we will not be able to do that ourselves.

What the ILE really should be

The ILE is, I think, poorly named, because it should not be an environment at all. Following the building metaphor, the ILE is (or should be) more like the system that connects a lot of buildings, bringing them together into a coherent, safe, livable community. It’s infrastructure and services; it is the roads, the traffic signals, the doors, the sidewalks, the water pipes, the waste pipes, the electricity, the network cables; it is the services – fire, police, schools, traffic control, etc; it is all the many rules, standards, norms and regulations that make them work together to help make an environment in which people can live, work, play, and grow. It’s part of the environment – the part that makes it work – but it is not the environment itself. The environment itself is Athabasca University, not just the tools, processes, and systems that support its functions. That includes, most importantly, the people who are part of the university, or who are visitors to it, who are not just users of the environment or dwellers in its walls, but who are or should be the most significant and visible parts of it, just as trees are part of the environment of forests, not users of the forest. Those people live in physical as well as other virtual environments (social media, Word documents, websites, etc) that the ILE can connect together too, to make them a part of it, so the spatial metaphor gets weird at this point. The ILE makes environmental boundaries fuzzy, permeable, and shifting. It’s not an ILE, it’s an ILI – an integrated learning infrastructure.

If we focused on the connections and interfaces, and on how information and processes need to pass across them, and if we thought hard about the nature of those signals, then we could build a system that is resilient, that adapts, that lasts, that grows, that evolves, with parts that we can seamless replace or improve because the interfaces – the building facades, the mains pipes, the junction boxes, etc – will mostly stay the same, evolving slowly as they should. This is about strategy, not planning,  a way of thinking about systems rather than a sequence of things to do.

Some of the key people involved in the process realize this. They are talking about standards, protocols, and projects to build interfaces between systems, and imagining future needs, though they are inevitably distracted by the process of renting Lego bricks, so I am not sure how much they will be able to stay focused on that. I hope they prevail over those who think they are building a set of classrooms and tightly connected admin offices out of self-contained interlocking bricks because our future depends on getting it right. We are aiming to grow. It just takes one critical piece in the Lego building to fail to support that, and the rest falls apart like a… well, like a pile of bricks.

References

Brand, S. (1997). How buildings learn. Phoenix Illustrated. https://www.penguinrandomhouse.ca/books/320919/how-buildings-learn-by-stewart-brand/9780140139969

Holland, J. H. (2012). Signals and Boundaries: Building Blocks for Complex Adaptive Systems. MIT Press.  https://mitpress.mit.edu/books/signals-and-boundaries

O’Neill, R.V., DeAngelis, D.L, Waide, J. B., & Allen, T. F. H. (1986). A Hierarchical Concept of Ecosystems. Princeton University Press. http://www.gbv.de/dms/bs/toc/025157787.pdf

Postman, N. (1998). Five things we need to know about technological change. Denver, Colorado, 28.  https://student.cs.uwaterloo.ca/~cs492/papers/neil-postman–five-things.html

Mediaeval Teaching in the Digital Age (slides from my keynote at Oxford Brookes University, May 26, 2021)

 front slide, mediaeval teaching

These are the slides from my keynote today at the Oxford Brookes “Theorizing the Virtual” School of Education Research Conference. As theorizing the virtual is pretty much my thing, I was keen to be a part of this! It was an ungodly hour of the day for me (2am kickoff) but it was worth staying up for. It was a great bunch of attendees who really got into the spirit of the thing and kept me wide awake. I wish I could hang around for the rest of it but, on the bright side, at least I’m up at the right time to see the Super Flower Blood Moon (though it’s looking cloudy, darn it).  In this talk I dwelt on a few of the notable differences between online and in-person teaching. This is the abstract…

Pedagogical methods (ways of teaching) are solutions to problems of helping people to learn, in a context filled with economic, physical, temporal, legal, moral, social, political, technological, and organizational constraints. In mediaeval times books were rare and unaffordable, and experts’ time was precious and limited, so lectures were a pragmatic solution, but they in turn created more problems. Counter-technologies such as classes, classrooms, behavioural rules and norms, courses, terms, curricula, timetables and assignment deadlines were were devised to solve those problems, then methods of teaching (pedagogies) were in turn invented to solve problems these counter-technologies caused, notably including:
· people who might not want (or be able) to be there at that time,
· people who were bored and
· people who were confused.
Better pedagogies supported learner needs for autonomy and competence, or helped learners find relevance to their own goals, values, and interests. They exploited physical closeness for support, role-modelling, inspiration, belongingness and so on. However, increasingly many relied on extrinsic motivators, like classroom discipline, grades and credentials to coerce students to learn. Extrinsic motivation achieves compliance, but it makes the reward or avoidance of the punishment the goal, persistently and often permanently crowding out intrinsic motivation. Intelligent students respond with instrumental approaches, satisficing, or cheating. Learning seldom persists; love of the subject is subdued; learners learn to learn in ineffective ways. More layers of counter-technologies are needed to limit the damage, and so it goes on.
Online, the constraints are very different, and its native forms are the motivational inverse of in-person learning. An online teacher cannot control every moment of a learner’s time, and learners can use the freedoms they gain to take the time they need, when they need it, to learn and to reflect, without the constraints of scheduled classroom hours and deadlines. However, more effort is usually needed to support their needs for relatedness. Unfortunately, many online teachers try (or are required) to re-establish the control they had in the classroom through grading or the promise of credentials, recreating the mediaeval problems that would otherwise not exist, using tools like learning management systems that were designed (poorly) to replicate in-person teaching functions. These are solutions to the problems caused by counter-technologies, not to problems of learning.
There are better ways, and that’s what this session is about.

front slide, mediaeval teaching

Educational technology: what it is and how it works | AI & Society

https://rdcu.be/ch1tl

This is a link to my latest paper in the journal AI & Society. You can read it in a web browser from there, but it is not directly downloadable. A preprint of the submitted version (some small differences and uncorrected errors here and there, notably in citations) can be downloaded from https://auspace.athabascau.ca/handle/2149/3653. The published version should be downloadable for free by Researchgate members.

This is a long paper (about 10,000 words), that summarizes some of the central elements of the theoretical model of learning, teaching and technology developed in my recently submitted book (still awaiting review) and that gives a few examples of its application. For instance, it explains:

  • why, on average researchers find no significant difference between learning with and without tech.
  • why learning styles theories are a) inherently unprovable, b) not important even if they were, and c) a really bad idea in any case.
  • why bad teaching sometimes works (and, conversely, why good teaching sometimes fails)
  • why replication studies cannot be done for most educational interventions (and, for the small subset that are susceptible to reductive study, all you can prove is that your technology works as intended, not whether it does anything useful).

Abstract

This theoretical paper elucidates the nature of educational technology and, in the process, sheds light on a number of phenomena in educational systems, from the no-significant-difference phenomenon to the singular lack of replication in studies of educational technologies.  Its central thesis is that we are not just users of technologies but coparticipants in them. Our participant roles may range from pressing power switches to designing digital learning systems to performing calculations in our heads. Some technologies may demand our participation only in order to enact fixed, predesigned orchestrations correctly. Other technologies leave gaps that we can or must fill with novel orchestrations, that we may perform more or less well. Most are a mix of the two, and the mix varies according to context, participant, and use. This participative orchestration is highly distributed: in educational systems, coparticipants include the learner, the teacher, and many others, from textbook authors to LMS programmers, as well as the tools and methods they use and create.  From this perspective,  all learners and teachers are educational technologists. The technologies of education are seen to be deeply, fundamentally, and irreducibly human, complex, situated and social in their constitution, their form, and their purpose, and as ungeneralizable in their effects as the choice of paintbrush is to the production of great art.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/8692242/my-latest-paper-educational-technology-what-it-is-and-how-it-works

Are experienced online teachers best-placed to help in-person teachers cope with suddenly having to teach online? Maybe not.

lecturingI recently downloaded What Teacher Educators Should Have Learned From 2020. This is an open edited book, freely downloadable from the AACE site, for teachers of teachers whose lives were disrupted by the sudden move to emergency remote teaching over the past year or so.  I’ve only skimmed the contents and read a couple of the chapters, but my first impressions are positive. Edited by Richard Ferdig and Kristine Pytash, It springs from the very active and engaged AACE SITE community, which is a good indicator of expertise and experience. It seems well organized into three main sections:

  1.         Social and Emotional Learning for Teacher Education.
  2.         Online Teaching and Learning for Teacher Education.
  3.         eXtended Reality (XR) for Teacher Education

I like the up-front emphasis on social and emotional aspects, addressing things like belongingness, compassion, and community, mainly from theoretical/model-oriented perspectives, and the other sections seem wisely chosen to meet practitioner needs. The chapters adopt a standardized structure:

  • Introduction. 
  • What We Know. 
  • Lessons Learned for Research. 
  • Lessons Learned for Practice. 
  • What You Should Read. 
  • References

Again, this seems pretty sensible, maintaining a good focus on actionable knowledge and practical steps to be taken. It’s not quite a textbook, but it’s a useful teach-yourself resource with good coverage. I look forward to dipping into it a bit more deeply. I expect to find some good ideas, good practices, and good theoretical models to support my teaching and my understanding of the issues. And I’m really pleased that it is being released as an open publication: well done, AACE, for making this openly available.

But I do wonder a little about who else will read this.

Comfort zones and uncomfortable zones

The other day I was chatting with a neighbour who teaches a traditional hard science subject at one of the local universities, who was venting about the problems of teaching via Zoom. He knew that I had a bit of interest and experience in this area, so he asked whether I had any advice. I started to suggest some ways of rethinking it as a pedagogical opportunity, but he was not impressed. Even something as low-threshold and straightforward as flipping the classroom or focusing on what students do rather than what he has to tell them was a step too far. He patiently explained that he has classes with hundreds of students and fixed topics that they need to learn, and he really didn’t see it as desirable or even possible to depart from his well-tried lecture format. At least it would be too much work and he didn’t have the time for it. I did try to push back on that a bit and I may have mentioned the overwhelming body of research that suggests this might not be a wise move, but he was pretty clear and firm about this.  What he actually wanted was for someone to make (or tell him how to make) the digital technology as easy and as comfortably familiar as the lecture theatre, and that would somehow make the students as engaged as he perceived them to normally be in his lectures, without notably changing how he taught. The problem was the darn technology, not the teaching. I bit my tongue at this point. I eventually came up with a platitude or two about trying to find different ways to make learning visible, about explicitly showing that he cares, about taking time to listen, about modelling the behaviour he wanted to see, about using the chat to good advantage, and about how motivation differs online and off, but I don’t think it helped. I suspect that the only things that really resonated with him were suggestions about how to get the most out of a webcam and a recommendation to get a better microphone.

Within the context in which he usually teaches, he is probably a very good teacher. He’s a likeable person who clearly cares a lot about his students, he knows a lot about his subject, and he knows how to make it appealing within the situation that he normally works. His courses, as he described them, are very conventional, relying a lot on the structure given to them by the industry-driven curriculum and the university’s processes, norms, and structures, and he fills his role in all that admirably. I think he is pretty typical of the vast majority of teachers. They’re good at what they do, comfortable with how they do it, and they just want the technology to accommodate them continuing to do so without unnecessary obstacles.

Unfortunately, technology doesn’t work that way.

The main reason it doesn’t work is very simple: technologies (including pedagogies) affect one another in complex and recursive ways, so (with some trivial exceptions) you can’t change one element (especially a large element) and expect the rest to work as they did before.  It’s simple, intuitive, and obvious but unless you are already well immersed in both systems theories and educational theory, really taking it to heart and understanding how it must affect your practice demands a pretty big shift in weltanschauung, which is not the kind of thing I was keen to start while on my way to the store in the midst of a busy day.

To make matters worse, even if teachers do acknowledge the need to change, their assumption that things will eventually (maybe soon) return to normal means that they are – reasonably enough –  not willing and probably not able to invest a lot of time into it. A big part of the reason for this is that, thanks to the aforementioned interdependencies, they are probably running round like blue-arsed flies just trying to keep things together, and filling their time with fixing the things that inevitably break in the process. Systems thrive on this kind of self-healing feedback loop. I guess teachers figure that, if they can work out how to tread water until the pandemic has run its course, it will be OK in the end.

If only.

Why in-person education works

The hallmark technologies (mandatory lectures, assignments, grades, exams, etc, etc) of in-person teaching are worse than awful but, just as a talented musician can make beautiful noises with limited technical knowledge and sub-standard instruments, so there are countless teachers who use atrocious methods in dreadful contexts but who successfully lead their students to learn. As long as the technologies are soft and flexible enough to allow them to paper over the cracks of bad tools and methods with good technique, talent, and passion, it works well enough for enough people enough of the time and can (with enough talent and passion) even be inspiring.

It would not work at all, though, without the massive machinery that surrounds it.

An institution (including its systems, structures, and tools) is itself designed to teach, no matter how bad the teachers are within it. The opportunities for students to learn from and with others around them, including other students, professors, support staff, administrators, and so on; the supporting technologies, including rules, physical spaces, structures, furnishings, and tools; the common rooms, the hallways, the smokers’ areas (best classrooms ever), the lecture theatres, the bars and the coffee shops; the timetables that make students physically travel to a location together (and thus massively increase salience); the notices on the walls; the clubs and societies; the librarians, the libraries, the students reading and writing within those libraries, echoing and amplifying the culture of learning that pervades them; the student dorms and shared kitchens where even more learning happens; the parties; even the awful extrinsic motivation of grades, teacher power, and norms and rules of behaviour that emerged in the first place due to the profound motivational shortcomings of in-person teaching. All of this and more conspires to support a basic level of at least mediocre (but good enough) learning, whether or not teachers teach well. It’s a massively distributed technology enacted by many coparticipants, of which designated teachers are just a part, and in which students are the lead actors among a cast of thousands. Online, those thousands are often largely invisible. At best, their presence tends to be highly filtered, channeled, or muted.

Why in-person methods don’t transfer well online

When most of that massive complex machinery is suddenly removed, leaving nothing but a generic interface better suited to remote business meetings than learning or, much worse, some awful approximation of all the evil, hard, disempowering technologies of traditional teaching wrapped around Zoom, or nightmarishly inhuman online proctoring systems, much of the teaching (in the broadest sense) disappears with it. Teaching in an institution is not just what teachers do. It’s the work of a community; of all the structures the community creates and uses; of the written and unwritten rules; of the tacit knowledge imparted by engagement in a space made for learning; of the massive preparation of schooling and the intricate loops that connect it with the rest of society; of attitudes and cultures that are shaped and reinforced by all the rest.  It’s no wonder that teachers attempting to transfer small (but the most visible) parts of that technology online struggle with it. They need to fill the ever-widening gaps left when most of the comfortable support structures of in-person institutions that made it possible in the first place are either gone or mutated into something lean and hungry. It can be done, but it is really hard work.

More abstractly, a big part of the problem with this transfer-what-used-to-work-in-person approach is that it is a technology-first approach to the problem that focuses on one technology rather than the whole. The technology of choice in this case happens to be a set of pedagogical methods, but it is no different in principle than picking a digital tool and letting that decide how you will teach. Neither makes much sense. All the technologies in the assembly – including pedagogies, digital tools, regulations, designs, and structures – have to work together. No single technology has precedence, beyond the one that results from assembling the rest. To make matters worse, what-used-to-work-in-person pedagogies were situated solutions to the problems of teaching in physical classrooms, not universally applicable methods of teaching. Though there are some similarities here and there, the problems of teaching online are not at all the same as those of in-person teaching so of course the solutions are different. Simply transferring in-person pedagogies to an online context is much like using the paddles from a kayak to power a bicycle. You might move, but you won’t move far, you won’t move fast, you won’t move where you want to go, and it is quite likely to end in injury to yourself or others.

Such problems have, to a large extent, been adequately solved by teachers and institutions that work primarily online. Online institutions and organizations have infrastructure, processes, rules, tools, cultures, and norms that have evolved to work together, starting with the baseline assumption that little or none of the physical stuff will ever be available. Anything that didn’t work never made it to first base, or has not survived. Those that have been around a while might not be perfect, but they have ironed out most of the kinks and filled in most of the gaps. Most of my work, and that of my smarter peers, begins in this different context. In fact, in my case, it mainly involves savagely critiquing that context and figuring out ways to improve it, so it is yet another step removed from where in-person teachers are now.

OK, maybe I could offer a little advice or, at least, a metaphor

Roughly 20 years ago I did share a similar context. Working in an in-person university, I had to lead a team of novice online teachers from geographically dispersed colleges to create and teach a blended program with 28 new online courses. We built the whole thing in 6 months from start to finish, including the formal evaluations and approvals process. I could share some generic lessons from what I discovered then, the main one being to put most of the effort into learning to teach online, not into designing course materials. Put dialogue and community first, not structure. For instance, make the first thing students see in the LMS the discussion, not your notes or slides, and use the discussion to share content and guide the process. However, I’d mostly feel like the driver of a Model T Ford trying to teach someone to drive a Tesla. Technologies have changed, I have changed, my memory is unreliable.

bicycleIn fact, I haven’t driven a car of any description in years. What I normally do now is, metaphorically, much closer to riding a bicycle, which I happen to do and enjoy a lot in real life too. A bike is a really smart, well-adapted, appropriate, versatile, maintainable, sustainable soft technology for getting around. The journey tends to be much more healthy and enjoyable, traffic jams don’t bother you, you can go all sorts of places cars cannot reach, and you can much more easily stop wherever you like along the way to explore what interests you. You can pretty much guarantee that you will arrive when and where you planned to arrive, give or take a few minutes. In the city, it’s often the fastest way to get around, once you factor in parking etc. It’s very liberating. It is true that more effort is needed to get from A to B, bad weather can be a pain, and it would not be the fastest or most comfortable way to reach the other side of the continent: sometimes, alternative forms of transport are definitely worth taking and I’m not against them when it’s appropriate to use them. And the bike I normally ride does have a little electric motor in one of the wheels that helps push me up hills (not much, but enough) but it doesn’t interfere with the joy (or most of the effort) of riding.  I have learned that low-threshold, adaptable, resilient systems are often much smarter in many ways than high-tech platforms because they are part-human. They can take on your own smartness and creativity in ways no amount of automation can match. This is true of online learning tools as much as it is true of bicycles. Blogs, wikis, email, discussion forums, and so on often beat the pants off learning management systems, commercial teaching platforms, learning analytics tools or AI chatbots for many advanced pedagogical methods because they can become what you want them to be, rather than what the designer thought you wanted, and they can go anywhere, without constraint. Of course, the flip side is that they take more effort, sometimes take more time, and (without enormous care) can make it harder for all concerned to do things that are automated and streamlined in more highly engineered tools, so they might not always be the best option in all circumstances, any more than a bike is the best way to get up a snowy mountain or to cross an ocean.

Why you shouldn’t listen to my advice

It’s sad but true that most of what I would really like to say on the subject of online learning won’t help teachers on the ground right now, and it is actually worse than the help their peers could give them because what I really want to tell them is to change everything and to see the world completely differently. That’s pretty threatening, especially in these already vulnerable times, and not much use if you have a class to teach tomorrow morning.

The AACE book is more grounded in where in-person teachers are now. The chapter “We Need to Help Teachers Withstand Public Criticism as They Learn to Teach Online”, for example, delves into the issues well, in accessible ways that derive from a clear understanding of the context.  However, the book cannot help but be an implicit (and, often, explicit) critique of how teachers currently teach: that’s implied in the title, and in the chapter structures.  If you’re already interested enough in the subject and willing enough to change how you teach that you are reading this book in the first place, then this is great. You are 90% of the way there already, and you are ready to learn those lessons. One of the positive sides of emergency remote teaching has been that it has encouraged some teachers to reflect on their teaching practices and purposes, in ways that will probably continue to be beneficial if and when they return to in-person teaching. They will enjoy this book, and they may be the intended audience. But they are not the ones that really need it.

I would quite like to see (though maybe not to read) a different kind of book containing advice from beginners. Maybe it would have a title something like ‘What I learned in 2020’ or ‘How I survived Zoom.’ Emergency remote teachers might be more inclined to listen to the people who didn’t know the ‘right’ ways of doing things when the crisis began, who really didn’t want to change, who maybe resented the imposition, but who found ways to work through it from where they were then, rather than where the experts think (or know) they should be aiming now. It would no doubt annoy me and other distance learning researchers because, from the perspective of recognized good practice, much of it would probably be terrible but, unlike what we have to offer, it would actually be useful. A few chapters in the AACE book are grounded in concrete experience of this nature, but even they wind up saying what should have happened, framing the solutions in the existing discourse of the distance learning discipline. Most chapters consist of advice from experts who already knew the answers before the pandemic started. It is telling that the word ‘should’ occurs a lot more frequently than it should. This is not a criticism of the authors or editors of the book: the book is clear from the start that it is going to be a critique of current practice and a practical guidebook to the territory, and most of the advice I’ve seen in it so far makes a lot of sense. It’s just not likely to affect many of the ones who have no wish to change not just their practices but their fundamental attitudes to teaching. Sadly, that’s also true of this post which, I think, is therefore more of an explanation of why I’ve been staring into the headlights for most of the pandemic, rather than a serious attempt to help those in need. I hope there’s some value in that because it feels weird to be a (slight, minor, still-learning) expert in the field with very strong opinions about how online learning should work, but to have nothing useful to say on the subject at the one time it ought to have the most impact.

Read the book:

Ferdig, R.E. & Pytash, K.E. (2021). What Teacher Educators Should Have Learned From 2020. Association for the Advancement of Computing in Education (AACE). Retrieved March 22, 2021 from https://www.learntechlib.org/primary/p/219088/.

My keynote slides from Confluence 2021 – STEAM engines: on building and testing the machines in our students’ minds

STEAM Engines

These are my slides for my keynote talk at the IEEE 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence-2021), hosted by Amity University, India, 28th January 2021. Technically it was 27th January here in Vancouver when I started, but 28th January when I finished. I hate timezones.

The talk winds up being about how to be a (mainly online) teacher in science, technology, engineering, and mathematics (STEM) – not how to teach, as such – but it gets to the point circuitously through discussing some aspects of the nature of technology, using a subset of my coparticipation model. In (very brief) the idea behind that is that ‘technology’ means organizing stuff to do stuff (any stuff), and we are not just users but participants in that organization, either playing our roles correctly (hard technologies) or organizing stuff ourselves (soft technologies). Almost always, thanks to the fact that almost all technologies are assemblies of and with other technologies, it is a mix of the two. In the technologies of learning there are many coparticipants, all playing roles, soft or hard or both. The designated teacher is only one of these, of varying significance.

The talk dwelt on the technological nature of teaching itself, and on the technological nature of the results of teaching. Teaching (as a distributed process) can usefully be seen as a process of building technologies in learners’ minds, some hard (training), some soft (teaching). These technologies can, like all technologies, be assembled together or with others, so our minds are both enacted and extended through technologies with one another and with the constructed world around us.

In STEM subjects there is a tendency to focus a lot more on building hard technologies than on soft technologies, because there tends to be a lot of hard stuff to learn before you can do anything much at all. There are many other subjects like this, including one of the biggest, language learning. The same is actually true in softer disciplines but students tend to come equipped with a lot of the basic hard stuff – especially language, debating skills, etc – already, so a really big part of the machine already exists. However, as much as it is in the liberal arts (the ‘A’ in STEAM), it is actually the soft technologies – what we do with those hard machines in our minds, the soft technologies we assemble with them – that actually matters, personally, in the workplace, and in our social lives. Also, from a motivational perspective it is normally a really bad idea to force people to learn a lot of hard stuff without them actually having a personal need or desire to do so. Training people in the hard stuff without using it in a soft, personally/socially relevant and meaningful context is a recipe for failure, though the fact that hard skills and knowledge can be accurately measured means that assessments of it tend to create an illusion of success. ‘Success’, though, just means that the hard machine works as intended, not that it actually does anything useful.

Avoiding this chicken and egg problem – the need for hard skills before you can do anything, but the uselessness of them in isolation – is not difficult. In fact, it is how we learn to speak, and many other things. It means letting go of the notion that teachers control everything, embracing the distributed nature of teaching, and designing ways of learning that support autonomy, achievable challenge, and relatedness. To do this means making learning (not just its products) visible, creating a culture and tools for sharing, and designing in support processes to help learners overcome obstacles. Basically, from a designated teacher’s perspective, it’s about letting go and staying close. It’s much the same as how we bring up our kids, as it happens.

It was an odd session, a lecture with no direct interaction. In itself, this would not be a great learning experience for anyone. However – and this is one of my big points – it is the assembly that matters, not the individual components, and I was not the one doing that assembly. Seen as a component of learning, attended without coercion or extrinsic goals, my little lecture is something that can be assembled to make something quite useful.

EdTech Books

This is a great, well presented and nicely curated selection of open books on education and educational technology, ranging from classics (and compilations of chapters by classic authors) to modern guides, textbooks, and blog compilations, covering everything from learning theory to choice of LMS. Some are peer-reviewed, there’s a mix of licences from PD to restrictive CC , and there’s good guidance provided about the type and quality of content. There’s also support for collaboration and publication. All books are readable online, most can be downloaded as (at least) PDF. I think the main target audience is students of education/online learning, and practitioners – at least, there’s a strong practical focus.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/7161867/edtech-books (where you can find some really interesting comments, including the one that my automated syndicator mistakenly turned into the main post the first time it ran)

How distance changes everything: slides from my keynote at the University of Ottawa

These are the slides from my keynote at the University of Ottawa’s “Scaffolding a Transformative Transition to Distance and Online Learning” symposium today. In the presentation I discussed why distance learning really is different from in-person learning, focusing primarily on the fact that they are the motivational inverse of one another. In-person teaching methods evolved in response to the particular constraints and boundaries imposed by physics, and consist of many inventions – pedagogical and otherwise – that are counter-technologies designed to cope with the consequences of teaching in a classroom, a lot of which are not altogether wise. Many of those constraints do not exist online, and yet we continue to do very similar things, especially those that control and dictate what students should do, as well as when, and how they should do it. This makes no sense, and is actually antagonistic to the natural flow of online learning. I provided a few simple ideas and prompts for thinking about how to go more with the flow.

The presentation was only 20 minutes of a lively and inspiring hour-long session, which was fantastic fun and provided me with many interesting questions and a chance to expand further on the ideas.

uottawa2020HowDistanceChangesEverything

Joyful assessment: beyond high-stakes testing

Here are my slides from my presentation at the Innovate Learning Summit yesterday. It’s not world-shattering stuff – just a brutal attack on proctored, unseen written exams (PUWEs, pronounced ‘pooies’), followed by a description of the rationale, process, benefits, and unwanted consequences behind the particular portfolio-based approach to assessment employed in most of my teaching. It includes a set of constraints that I think are important to consider in any assessment process, grouped into pedagogical, motivational, and housekeeping (mainly relating to credentials) clusters. I list 13 benefits of my approach relating to each of those clusters, which I think make a pretty resounding case for using it instead of traditional assignments and tests. However, I also discuss outstanding issues, most of which relate to the external context and expectations of students or the institution, but a couple of which are fairly fundamental flaws (notably the extreme importance of prompt, caring, helpful instructor/tutor engagement in making it all work, which can be highly problematic when it doesn’t happen) that I am still struggling with.

Skills lost due to COVID-19 school closures will hit economic output for generations (hmmm)

Snippet from OECD report on covid-19 and education This CBC report is one of many dozens of articles in the world’s press highlighting one rather small but startling assertion in a recent OECD report on the effects of Covid-19 on education – that the ‘lost’ third of a year of schooling in many countries will lead to an overall lasting drop in GDP of 1.5% across the world. Though it contains many more fascinating and useful insights that are far more significant and helpful, the report itself does make this assertion quite early on and repeats it for good measure, so it is not surprising that journalists have jumped on it. It is important to observe, though, that the reasoning behind it is based on a model developed by Hanushek and Woessman over several years, and an unpublished article by the authors that tries to explain variations in global productivity according to amount and  – far more importantly – the quality of education: that long-run productivity is a direct consequence of the cognitive skills (or knowledge capital) of a nation, that can be mapped directly to how well and how much the population is educated.

As an educator I find this model, at a glance, to be reassuring and confirmatory because it suggests that we do actually have a positive effect on our students. However, there may be a few grounds on which it might be challenged (disclaimer: this is speculation). The first and most obvious is that correlation does not equal causation. The fact that countries that do invest in improving education consistently see productivity gains to match in years to come is interesting, but it raises the question of what led to that investment in the first place and whether that might be the ultimate cause, not the education itself.  A country that has invested in increasing the quality of education would, normally, be doing so as a result of values and circumstances that may lead to other consequences and/or be enabled by other things (such as rising prosperity, competition from elsewhere, a shift to more liberal values, and so on).  The second objection might be that, sure, increased quality of education does lead to greater productivity, but that it is not the educational process that is causing it, as such. Perhaps, for instance, an increased focus on attainment raises aspirations. A further objection might be that the definition of ‘quality’ does not measure what they think it measures. A brief skim of the model used suggests that it makes extensive use of scores from the likes of TIMSS, PIRLS and PISA, standardized test approaches used to compare educational ‘effectiveness’ in different regions that embody quite a lot of biases, are often manipulated at a governmental level, and that, as I have mentioned once or twice before, are extremely dubious indicators of learning: in fact, even when they are not manipulated, they may indicate willingness to comply with the demands of the powerful more than learning (does that improve GDP? Probably).  Another objection might be that absence of time spent in school does not equate to absence of education. Indeed, Hanushek and Woessman’s central thesis is that it is not the amount but the quality of schooling that matters, so it seems bizarre that they might fall back on quantifying learning by time spent in school. We know for sure that, though students may not have been conforming to curricula at the rate desired by schools and colleges, they have not stopped learning. In fact, in many ways and in many places, there are grounds to believe that there have been positive learning benefits: better family learning, more autonomy, more thoughtful pedagogies, more intentional learning community forming, and so on.  Out of this may spring a renewed focus on how people learn and how best to support them, rather than maintaining a system that evolved in mediaeval times to support very different learning needs, and that is so solidly packed with counter technologies and so embedded in so many other systems that have nothing to do with learning that we have lost sight of the ones that actually matter. If education improves as a result, then (if it is true that better and more education improves the bottom line) we may even see gains in GDP. I expect that there are other reasons for doubt: I have only skimmed the surface of the possible concerns.

I may be wrong to be sceptical –  in fairness, I have not read the many papers and books produced by Hanushek and Woessman on the subject, I am not an economist, nor do I have sufficient expertise (or interest) to analyze the regression model that they use. Perhaps they have fully addressed such concerns in that unpublished paper and the simplistic cause-effect prediction distorts their claims. But, knowing a little about complex adaptive systems, my main objection is that this is an entirely new context to which models that have worked before may no longer apply and that, even if they do, there are countless other factors that will affect the outcome in both positive and negative ways, so this is not so much a prediction as an observation about one small part of a small part of a much bigger emergent change that is quite unpredictable. I am extremely cautious at the best of times whenever I see people attempting to find simple causal linear relationships of this nature, especially when they are so precisely quantified, especially when past indicators are applied to something wholly novel that we have never seen before with such widespread effects, especially given the complex relationships at every level, from individual to national.  I’m glad they are telling the story – it is an interesting one that no doubt contains grains of important truths – but it is just an informative story, not predictive science.  The OECD has a bit of track record on this kind of misinterpretation, especially in education. This is the same organization that (laughably, if it weren’t so influential) claimed that educational technology in the classroom is bad for learning. There’s not a problem with the data collection or analysis, as such. The problem is with the predictions and recommendations drawn from it.

Beyond methodological worries, though, and even if their predictions about GDP are correct (I am pretty sure they are not – there are too many other factors at play, including huge ones like the destruction of the environment that makes the odd 1.5% seem like a drop in the barrel) then it might be a good thing. It might be that we are moving – rather reluctantly – into a world in which GDP serves as an even less effective measure of success than it already is. There are already plentiful reasons to find it wanting, from its poor consideration of ecological consequences to its wilful blindness to (and causal effect upon) inequalities, to its simple inadequacy to capture the complexity and richness of human culture and wealth. I am a huge fan of the state of Bhutan’s rejection of the GDP, that it has replaced with the GNH happiness index. The GNH makes far more sense, and is what has led Bhutan to be one of the only countries in the world to be carbon positive, as well as being (arguably but provably) one of the happiest countries in the world. What would you rather have, money (at least for a few, probably not you), or happiness and a sustainable future? For Bhutan, education is not for economic prosperity: it is about improving happiness, which includes good governance, sustainability, and preservation of (but not ossification of) culture.

Many educators – and I am very definitely one of them – share Bhutan’s perspective on education. I think that my customer is not the student, or a government, or companies, but society as a whole, and that education makes (or should make) for happier, safer, more inventive, more tolerant, more stable, more adaptive societies, as well as many other good things. It supports dynamic meta-stability and thus the evolution of culture. It is very easy to lose sight of that goal when we have to account to companies, governments, other institutions, and to so many more deeply entangled sets of people with very different agendas and values, not to mention our inevitable focus on the hard methods and tools of whatever it is that we are teaching, as well as the norms and regulations of wherever we teach it. But we should not ever forget why we are here. It is to make the world a better place, not just for our students but for everyone. Why else would we bother?

Originally posted at: https://landing.athabascau.ca/bookmarks/view/6578662/skills-lost-due-to-covid-19-school-closures-will-hit-economic-output-for-generations-hmmm

How Assessment is Changing in The Digital Age – Five Guiding Principles | teachonline.ca

This article from teachonline.ca draws from a report by JISC (the UK academic network organization) to provide 5 ‘principles’ for assessment. I put the scare quotes around ‘principles’ because they are mostly descriptive labels for trends and they are woefully non-inclusive. There is also a subtext here – that I do understand is incredibly hard to avoid because I failed to fully do so myself in my own post last week – that assessment is primarily concerned with proving competence for the sake of credentials (it isn’t). Given these caveats, most of what is written here, however, makes some sense. Lecture with skeleton

Principle 1: authentic assessment. I completely agree that assessment should at least partly be of authentic activities. It is obvious how that plays out in applied disciplines with a clear workplace context. If you are learning how to program, for instance, then of course you should write programs that have some value in a realistic context and it goes without saying that you should assess the same. This includes aspects of the task that we might not traditionally assess in a typical programming course such as analysis, user experience testing, working with others, interacting with StackOverflow, sharing via GitHub, copying code from others, etc. It is less obvious in the case of something like, say, philosophy, or history, or latin, though, or, indeed, in any subject that is primarily found in academia. Authentic assessment for such things would probably be an essay or conference presentation, or perhaps some kind of argument, most of the time, because that’s what real life is like for most people in such fields (whether that should be the case remains an open issue). We should be wary, though, of making this the be-all and end-all, because there’s a touch of behaviourism lurking behind the idea: can the student perform as expected? There are other things that matter. For instance, I think that it is incredibly important to reflect on any learning activity, even though that might not mirror what is typically done in an authentic context. It can significantly contribute to learning but it can also reveal things that may not be obvious when we judge what is done in an authentic context, such as why people did what they did or whether they would do it the same way again. There may also be stages along the way that are not particularly authentic, but that contribute to learning the hard skills needed in order to perform effectively in the authentic context: learning a vocabulary, for example, or doing something dangerous in a cut-down, safe environment. We should probably not summatively assess such things (they should rarely contribute to a credential because they do not demonstrate applied capabilityre), but formative assessment – including of this kind of activity – is part of all learning.

Principle 2: accessible and inclusive assessment. Well, duh. Of course this should be how it is done. Not so much a principle as plain common decency. Was this not ever so? Yes it was. Only an issue when careless people forget that some media are less inclusive than others, or that not everyone knows or cares about golf. Nothing new here.

Principle 3: appropriately automated assessment. This is a reaction to bad assessment, not a principle for good assessment. There is a principle that really matters here but it is not appropriate automation: it is that assessment should enhance and improve the student experience. Automation can sometimes do that. It is appropriate for some kinds of formative feedback (see examples of non-authentic learning above)  but very little else which, in the context of this article (that implicitly focuses on the final judgment), means it is a bad idea to use it at all.

Principle 4: continuous assessment. I don’t mind this one at all. Again, the principle is not what the label claims, though. The principle here is that assessment should be designed to improve learning. For sure, if it is used as a filter to sort the great from the not great, then the filter should be authentic which, for the most part, means no high stakes, high stress, one-chance tests, and that overall behaviours and performance over time are what matters. However, there is a huge risk of therefore assessing learning in progress rather than capability once a course is done. If we are interested in assessing competence for credentials, then I’d rather do it at the end, once learning has been accomplished (ignoring the inconvenient detail that this is not a terminal state and that learning must always undergo ever-dynamic renewal and transformation until the day we die). Of course, the work done along the way will make up the bulk of the evidence for that final judgment but it allows for the fact that learning changes people, and that what we did early on in the journey seldom represents what we are able to do in the light of later learning.

Principle 5: secure assessment. Why is this mentioned in an article about assessment in the digital age? Is cheating a new invention? Was it (intentionally) insecure before? This is just a description of how some people have noticed that traditional forms of assessment are really dumb in a context that includes Wikipedia, Google, and communications devices the size of a peanut. Pointless, and certainly not a new principle for the Digital Age. In fairness, if the principles above are followed in spirit as well as in letter, it is not likely to be a huge issue but, then, why make it a principle? It’s more a report on what teachers are thinking and talking about.

The summary is motherhood and apple pie, albeit that it doesn’t entirely fall out from the principles (choice over when to be assessed, or peer assessment, for instance, are not really covered in the principles, though they are very good ideas).

I’m glad that people are sharing ideas about this but I think that there are more really important principles than these: that students should have control over their own assessment, that it should never reward or punish, that it should always support learning, and so on. I wrote a bit about this the other day, and, though that is a work in progress, I think it gets a little closer to what actually matters than this.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/6531701/how-assessment-is-changing-in-the-digital-age-five-guiding-principles-teachonlineca