Nobody has ever learned anything at a distance, and no one ever goes to a distance institution

Nobody learns anything online or at a distance. Nothing at all. You are always learning it where you are now. All learning is in-person learning, and it all takes place within a physical environment, part of which (only a part) may include whatever technologies you might be using to talk with people, read, watch, listen, and so on.

But there’s a distance component to all in-person education, too. People who learn with teachers in a physical space are almost always also interacting with other participants in the teaching role at a distance, usually in time and space – authors, classroom designers, editors, illustrators, timetablers, curriculum designers, and so on. And, for ‘in-person’ institutional learners, most of the learning itself also usually occurs at a distance, outside the classroom. This is most tangible in the form of assignments and homework but, if teaching works, sense-making connections always occur after the lesson is over, and continue to do so long after (sometimes decades after) the teaching event, almost never in the same place that the lesson originally occurred. So all learning is distance learning, in the sense of occurring somewhere and somewhen other than where and/or when teaching occurred.

It is not surprising, therefore, that no significance difference is normally found between online and in-person learning outcomes because they are essentially the same thing.

That doesn’t mean that there are no consistent differences between the experiences of what we describe as online and in-person learners: very far from it. Some of those differences are inherent in the medium, whether online or in-person. But the big differences that actually make a difference are not in learning: they are in teaching.

There are (or should be) huge differences between distance/online teaching and in-person teaching. The most important differences are not technological, as such, nor do they lie in the physical distance between learners and teachers. Michael Moore very usefully talks of distance in terms of structure and dialogue to describe the transactional distance that matters more but, as I observed in my first book, from a system dynamics perspective, transactional distance is mainly a measure of the locus of control, not structure or dialogue as such. There are other differences that matter, but control is the big one.

Control in in-person teaching

Pedagogies are solutions to problems, and the physical context is rife with problems, most notably that it makes it far more likely that teachers will control much of the process. There are a great many reasons for this, most of which have nothing at all to do with pedagogical intent: it’s mainly physics, economics, and biology, and the consequences that follow. Though many teachers try to avoid it, doing so is a seriously upstream struggle. It causes immense problems, primarily because of the great harm it does to intrinsic motivation. Learners lack autonomy and are often over-challenged or under-challenged (thus undermining the two central foundations of intrinsic motivation) because, by default, everyone is forced to follow the same pace and method, determined by the teacher.  Good in-person pedagogies compensate for these inherent weaknesses, by allowing (emphasis on allowing) learners to personalize their own learning, by engaging in dialogue, by building communities, by helping learners to find their own motivation, and so on.

Control in online teaching

Without significant coercion, the learner is always far more autonomous in almost any online or distance teaching context. Students don’t need to follow the teacher’s plan because they are not bound to a scheduled classroom, with all the problems of being heard, being present, and working in lock-step together that arise from it.  Unfortunately, far too many online teachers assume that they have the same level of control as their in-person counterparts and, usually, it becomes a partly self-fulfilling assumption through coercive methods like frequent grading, draconian scheduling, and tests. They consequently often make use of very similar pedagogies to those of their in-person counterparts, struggling to find simulacra or workarounds for the affordances of physical spaces that are no longer available, and vainly believing that the learner is going to follow the path that they have determined for them. An unfortunate unintentional consequence of in-person teaching is thus too readily accepted as teaching’s central motif.

To make matters more difficult, educational institutions impose other stupid ideas that are side-effects of teaching in physical classrooms like fixed-length (or multiples of fixed lengths) courses, deadlines, and failure (what the heck?). I think this picture helps to illustrate my feelings about this:

horse pulling a car

Dealing with this kind of problem may require some big changes at an institutional level because teachers too rarely have much choice as to how long their courses might be, or whether students should receive grades for them, or how they are scheduled, and so on.

Outside of arbitrary institutional constraints, online courses do not have to be a particular length, because more complex scheduling is possible (and easily automated) and, if they are self-paced, there’s no good reason for them to have any schedule at all, nor for them to end on a particular date, as long as they can be funded. Credentialing and learning are two completely different processes that (thanks to the motivational impacts) are in many ways mutually exclusive. They must therefore be decoupled, as much as possible. It makes no sense to talk definitively about failure when you are learning: learning is either accomplished or not accomplished yet, and failure is an integral part of the process of accomplishment (ask any gamer). And, though they might not always get a credential on the first try, students never need to irrevocably fail to get them: they can just keep going until they succeed, or until they lose interest, much as we do for driving tests.

Distributed in-person teaching

Such issues highlight the fact that it is not just the designated teacher who teaches. Obviously, the main teacher in any learning transaction is the learner, sometimes followed by the designated teacher or writer of a textbook, but the rules, structures, processes and methods that define the educational context also teach. So do other students, especially in an in-person context thanks to the fact that they are all forced to be in one place at one time. In an in-person context, from the simple fact of having to turn up at a particular place and time to the structures of courses, assessments, classroom spaces, cafes, and schedules, the institutional context controls the learning process in profound ways.

Again, for teachers, good pedagogies have to compensate for the problems that such things cause, as well as to take advantage of the positive affordances the physical context provides. There are many of those. A great deal of learning can be assumed to occur in journeys to and from classrooms, in canteens, in common rooms, in libraries, and in other shared spaces, for example. Combined with the fact that a great deal of the organization is done by others, and that institutional credentials motivate (not in a good way), institutions (not just teachers) themselves teach through their physical, temporal, and organizational form. Combined with the many other teachers involved in the process (the learners themselves, textbook authors, illustrators, designers, etc) this means that in-person teachers don’t actually have to teach very well in order for their students to succeed. The systems mean that students are drowning in a sea of teachers.

Distributed online teaching

The online teaching context is, in principle though not so much in practice, more malleable, diffuse, and affording of learner control, but it almost always lacks much in the way of controllable infrastructure that learners can safely be assumed to inhabit, so teaching generally needs to be pretty good because, without care, that might be all there is. However, there are ways to help provide a bit more of the structure that also teaches. Some people try to create simulations of the in-person infrastructure, such as learning cafes, less formal social spaces (such as Athabasca Landing), etc but, though they can help a bit, they seldom work very well. Partly, this is because of the too common focus on explicit outcomes and grading found in most institutional teaching together with failure by students and teachers to recognize the critical role of in-between spaces in learning. Mainly, though, it’s because it’s not just there: students aren’t going to pass it on their way to somewhere else or be there for other reasons (like a need for rest or refreshment). They have to intentionally visit, typically with a purpose in mind but, as the main value of it is its purposelessness, that’s not often going to happen. It would be better to embed such spaces in the intentional teaching space, to allow informal interaction everywhere, but too few teaching systems (notably none of the mainstream LMSs) support that.

It can help a little to make the need for such engagement more explicit in the teaching process: to tell students it is a good idea to engage beyond the course. It doesn’t have to be virtual, or planned, or catered for by the institution or teacher. We could just suggest that learners talk about what they’ve learned with someone they know, or that they should visit a place where people do talk about such things, or share via social media. But we can and should provide social spaces where they can interact with one another beyond the course, too.

Another way is to acknowledge the physical and virtual context of the learner, and to design flexible learning experiences that allow them to apply what they are learning to where they are, or to make use of what is around them (virtually and physically) to support the learning process. This is a pedagogical solution that, for some subjects, fits very well. For instance, I can rely on nearly all of my students working or studying in a context that can be used for analyzing and building information systems. It’s harder in the case of subjects that are much more abstract, or where engaging directly with the subject might be dangerous or prohibitively expensive (e.g. nuclear physics or medicine).

Really, though, the big problem is one of perspective. It’s that we see our virtual institutions as analogues of our physical institutions, not as something really very different. Even quite enlightened edtech folk talk of students bringing their own devices, or bringing their own networks to the learning space. That’s laudable, in a way, but it’s completely the wrong way round. Instead, online and distance students bring their own institutions (plural), or bring their own courses into their own spaces. The need to go to an institution is a side-effect of the physics that co-determines how traditional teaching occurs. Students shouldn’t need to go to an online institution; institutions should come to them. That is, in fact, the reality of learning through online means, but almost everything we do works on the assumption that it is the other way round: that they visit us.

Conclusion

We (the teachers) are not, cannot be, and should not try to be the sole arbiters of how our distance/online students learn. Unless they want it, we should not even be managers or leaders of it. Instead, we should think of ourselves as parts of their support networks, available to provide help and direction as and when it is needed. If they want to delegate some of the control of the process to us then that’s great, because it keeps us employed and we’re often pretty good at it because it’s our job, but we should not take it unbidden.

We really need to let go of the notion that learning only takes place when and where our teaching happens,  and that we are the sole directors of it. We need to acknowledge everything that learners bring with them, in prior learning, in digital and physical systems, in networks, and in pedagogical tools. But it’s not about bringing stuff to us: it’s about bringing it to their own learning. Above all, we need to recognize that online students do not come to institutional environments, but that they bring those institutions into their own environments. From that simple shift in perspective, myriad improvements follow.

Gather is a remarkable retro but modern collaboration, cooperation, and socialization system: I really like it.

The other day a small group of students and I had a really interesting experimental classroom session in Gather. The article linked here describes a much bigger-scale and intentional approach.

If you’re not familiar with Gather, its a web-based real-time social environment. Its deceptively simple (to the point of silliness) 8-bit interface provides a 2D top-down view of a virtual space that very closely resembles that of a 1980s video game – in fact, it’s even simpler than the seminal multi-player Habitat, that came out in 1985, inasmuch as it is only top-down. You could think of it as much simpler and flatter but vaguely in a similar vein to Minecraft or Habbo, but it’s easier to create new spaces (people have replicated whole buildings, islands, and villages, in 2D 8-bit form – there are even pubs and bars). Your cartoon-ish avatar can be moved around with really simple cursor-driven movements, though more complex interactions with objects require you to press the X key, and/or to make selections from menus or move things with your mouse. Spaces can be any size, you can create them and objects within them (including in the free version), and there are mapping tools to help you find people and places.

So far so not very interesting: been there and done that.

Immediately under the surface, however, is a full-fledged, very modern web-conferencing system with a wide range of options to share audio, webcams, documents, videos, images, whiteboards, screens, chat, calendars, and so on, which is (almost) infinitely extendable through embedding of any website. Objects left in the space can be persistent, so it’s not just about real-time meetings. You can send and leave messages, videos, voice recordings, and more. There’s a lot more to it that I’ve yet to explore, but I’ve not found anything I could do in almost any collaboration system that I could not do here. Functionally, it is not dissimilar to MS Teams, but there the similarity ends: this is way better in almost every way.

A group in Gather (not my students!)

Though it looks like an ancient video game, the interface is actually extremely smart, because instead of interacting with a fixed, typically hierarchical, abstract set of documents and containers, it gives you an intuitive spatial view on everything, and the space is very easy to create, incredibly flexible, and visually well differentiated (not perfect for people with visual disabilities, but they are catered for).  You can enter a private space with others if you wish, a bit like breakout rooms in conventional webmeeting systems except that it is easy for anyone to (literally) wander between them, to see who is inside (if enabled) and for the moderator of the space to be seen and heard by everyone, wherever they are. By default, outside a private space you can generally only hear and see someone if your avatar is near to theirs, so you could have hundreds of people in a space but only chat with those around you, much like a physical social gathering. As you move away the voice and the webcam video of those no longer proximal to you start to fade until they disappear altogether, while others you approach fade into view. Digital objects (e.g. files, presentations, videos, websites, etc) can be placed anywhere, in arbitrary but potentially meaningful spatial relationships with one another, and visitors can work on them or view them together.

The sense of social presence is very palpable in a way that far exceeds conventional webmeeting tools – it’s incredibly effective, without being intrusive, difficult, or demanding explicit interaction. No uncomfortable silences or artificial instrumental activities here, and you get to do things together, not just stare at one another’s faces or watch a document. In this space you could have a private office that people can ‘see’ you inside, but have to knock to come in and chat (without being heard by others). They can see if you are interacting with others (who can be anonymous shadows) and are therefore busy, or they can join in the conversation – they cannot overhear anything without you knowing they are there, much like in meatspace. You could ‘lock’ the room if you don’t want to be disturbed at all. You could leave your office to visit a common room, or classroom, or conference, or whatever. You could just stop by someone else’s office to chat, or they could leave messages and so on for you.

And, of course, you could use if for teaching, which is exactly what this linked article describes. It provides a really good in-depth description of how the author is using Gather to manage a very large introductory computing class, that goes into plenty of detail about how Gather works and what you can do there. The uses involve nothing more than plain vanilla options that take a few minutes to configure – a lot more is possible – but it’s easy to see how incredibly effectively it marries the digital environment and our evolved ability to navigate physical spaces, without trying to exactly mimic the real world beyond what is absolutely necessary to get around.

This seems like a vastly superior approach to communication than that of nearly all shared-reality VR, that mostly just replicates all the constraints and annoyances of the physical world or, when it doesn’t, feels jarring and wrong, not to mention almost always involving a steep learning curve and requiring a mighty machine to run it well (or, worse, separating you from your actual physical world with annoying goggles and headsets). Such a waste of computing power for no good reason. It’s not that shared-reality VR doesn’t have some compelling use cases – it does. It’s just deeply hopeless as a general-purpose social environment.

Though not quite as infinitely flexible as Minecraft or an old-fashioned MOO (that it resembles, albeit highly evolved from there) – at least in what I’ve seen so far – it’s much easier to get started and much easier to get around, plus it’s a fully featured synchronous web conferencing system. There’s copious and comprehensive help at https://support.gather.town/help. I contacted the company for an educational discount and thereby got involved with their tech support team (because I found a bug/feature that wouldn’t let me pay, not that it was needed for this small number of students), and I found them very responsive, friendly, and personally interested.

Gather is also vastly superior to the abstract, alienating, function-driven approaches of most ‘grid of faces’ webmeeting software like Teams, Zoom, or Webex, albeit that it shares with them the annoying need to visit a separate virtual space (a website), rather than integrating that space in the rest of your own environment. However, the only significant exception to that failing that I’m aware of is the very excellently designed Around, though even that has to become more of an isolated space (albeit with a cute campfire to sit around) if you are meeting many people, and it is nothing like as flexible or powerful as Gather – it’s just a meeting system.

Back in the early 2000s I tried to build a much simpler toy system along quite similar lines, called Dwellings. I used a metaphor of streets and buildings (my inspiration was Jane Jacobs’s ‘The Death and Life of Great American Cities’ – I tried to enable support for the kinds of things driving successful city areas), as well as a bunch of stigmergic cues to help with social navigation and some ideas drawn from MOOs. These were pre-HTML5 days and, though AJAX had recently been invented, I’d not discovered it, so it really didn’t work at all well: I had to invent some really bad and ugly ways to do synchronous stuff. I only got as far as providing clunky text chat, the interface was dire, it only supported sharing of web sites (and graffiti about them) and it was a truly awfully designed and implemented system that ground to a halt under the strain of more than about half a dozen simultaneous users. If you really want to suffer, a version from about 15 years ago is actually still online though I guess I should get round to removing it at some point as it couldn’t be much flakier. There were a few papers about it (e.g. this one, sadly paywalled by AACE but available via most university library accounts).  Gather is orders of magnitude better, far more fully thought through and, above all, it actually works, really well, with a very full range of modern, effective features. I don’t like that it’s a cloud-only service that starts to get expensive for more than a few dozen people, I don’t like that it’s not open source, and I am not sure that some of my more staid colleagues would take it seriously: it really does look a lot like an old-fashioned game. But it is a really cool place to collaborate, cooperate, and socialize, in a fabulously retro but very modern way.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/10868769/gather-is-a-remarkable-retro-but-modern-collaboration-cooperation-and-socialization-system-i-really-like-it

The Uncensored Library – Reporters without borders

This is very cool – a library of articles and journals that have been censored in various regions, built inside Minecraft, that thereby evades censorship (for now). It lends a whole different meaning to ‘serious games’.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/10846432/the-uncensored-library-%E2%80%93-reporters-without-borders

Challenges of the Physical: slides from my keynote at XII Conferência Internacional de Tecnologias de Informação e Comunicação na Educação, September 2021

Here are the slides from my opening keynote today for the XII Conferência Internacional de Tecnologias de Informação e Comunicação na Educação in Portugal. first slide of the presentation

The conference theme was ‘challenges of the digital’ so I thought it might be fun to reverse the problem, and to think instead about the challenges of in-person education. In this presentation I imagined a world in which in-person teaching had never been invented, and presented a case for doing so. In fairness, it was not a very good case! But I did have fun using some of the more exotic voice changing features of my Voicelive Play vocal processor (which I normally use for performing music), presenting some of the arguments against my suggestions in different voices using a much better mic than my usual (pretty good) Blue Yeti. I might not use the special effects again that often, but I was quite impressed with the difference the better microphone made.

My central points (mostly implicit until the end) were:

  • That the biggest challenge of the digital is all the baggage that we have inherited from in-person teaching, and our continuing need to interoperate with in-person institutions.
  • That pedagogies are neither universal nor neutral. They are solutions to problems of learning in a particular context, in assembly with countless constraints and possibilities provided by that context: people, tools, structures, methods, systems, and so on.
  • That solutions to learning in a physical context – at least in the one-to-many model of traditional education systems – inevitably lead to a very strong power imbalance between teacher and learner, where the teacher is in control of every moment that the teaching event occurs. This has many repercussions, not least of which being that needs for autonomy and competence support are very poorly addressed (though relatedness comes for free), so it is really bad for intrinsic motivation.
  • Thus, the pedagogies of physical spaces have to compensate for the loss of control and achievable challenge that they naturally entail.
  • That the most common approach – and, again, an almost inevitable (i.e. the shortest path) follow-on from teaching a lot of people at once – involves rewards and punishments, that massively impair or destroy intrinsic motivation to learn and, in most cases, actively militate against effective learning.
  • That the affordances of teaching everyone the same thing at once lead fairly naturally to credentials for having learned it, often achieved in ‘efficient’ ways like proctored exams that are incredibly bad for learning, and that greatly reinforce the extrinsic motivation that is already highly problematic in the in-person modality. The credentials, not the learning, become the primary focus.
  • That support for autonomy and competence are naturally high in online learning, though support for relatedness is a mix of good and bad. There is no need for teachers being in control and, lacking most of the means of control available to in-person teachers, the only reliable way to regain it is through rewards and punishments which, as previously mentioned, are fatal to intrinsic motivation.
  • That the almost ubiquitous ways that distance educators inherit and use the pedagogies, methods, and structures of in-person learning – especially in the use of coercion through rewards and punishments (grades, credentials, etc) but also in schedules, fixed-length courses, inflexible learning outcomes, etc – are almost exactly the opposite of what its technologies can best support.

Towards the end, acknowledging that it is difficult to change such complex and deeply entangled systems (much though it is to be desired) I presented some ways of reducing the challenges of the physical in online teaching, and regaining that lost intrinsic motivation, that I summarized thus:

  • Let go (you cannot and should not control learning unless asked to do so), but stay close;
  • Make learning (not just its products) visible (and, in the process, better understand your teaching);
  • Make learning shared (cooperation and, where possible, collaboration built in from the ground up);
  • Don’t ever coerce (especially not through grades);
  • Care (for learners, for learning, for the subject).

It’s a theme that I have spoken and written of many, many times, but (apart from the last few slides) the way I presented it this time was new for me. I had fun pretending to be different people, and the audience seemed to like it, in a challenging kind of a way. There were some great questions at the end, not all of which I had time to answer, though I’m happy to continue the conversation here, or via Twitter.

At last, a serious use for AI: Brickit

https://brickit.app/

Brickit is what AI was made for. You take a picture of your pile of LEGO with your phone or tablet, then the app figures out what pieces you have, and suggests models you could build with it, including assembly plans. The coolest detail, perhaps, is that, having done so, it highlights the bricks you will need in the photo you took of your pile, so you can find them more easily. I’ve not downloaded it yet, so I’m not sure how well it works, but I love the concept.

The fan-made app is iOS only for now, but an Android version is coming in the fall. It’s free, but I’m guessing it may make money in future from in-app purchases giving access to more designs, options to purchase missing bricks, or something along those lines.

It would be cooler if it connected Lego enthusiasts so that they could share their MOCs (my own constructions) with others. I’m guessing it might use the LXFML format, which LEGO® itself uses to export designs from its (unsupported, discontinued, but still available) LEGO DIgital Designer app, so this ought to be easy enough. It would be even cooler if it supported a swap and share feature, so users could connect via the app to get hold of or share missing bricks. The fact that it should in principle be able to catalogue all your pieces would make this fairly straightforward to do. There are lots of existing sites and databases that share MOCs, such as https://moc.bricklink.com/pages/moc/index.page, or the commercial marketplace https://rebrickable.com/mocs/#hottest; there are brick databases like https://rebrickable.com/downloads/ that allow you to identify and order the bricks you need;  there are even swap sites like http://swapfig.com/ (minifigures only); and, of course, there are many apps for designing MOCs or downloading others. However, this app seems to be the…er…missing piece that could make them much more useful. 

Reviews suggest that it doesn’t always succeed in finding a model and might not always identify all the pieces. Also, I don’t think there’s a phone camera in the world with fine enough resolution to capture my son’s remarkably large LEGO collection. Even spreading the bricks out to take pictures would require more floor-space than any of us have in our homes. But what a great idea!

Originally posted at: https://landing.athabascau.ca/bookmarks/view/9558928/at-last-a-serious-use-for-ai-brickit

A few thoughts on learning management systems, and on integrated learning environments and their implementation

Why do we build digital learning systems to mimic classrooms?

It is understandable that, when we teach in person, we have to occupy and make different uses of the same or similar environments like classrooms, labs, workshops, lecture theatres, and offices. There are huge financial, physical, and organizational constraints on making the environment fit the task, so it would be madness to build a whole new classroom every time we wished to run a different class.

Online, we could build anything we like

But why do we do the same when we teach online? There are countless tools available and, if none are suitable, it is not too hard to build them or modify them to suit our needs. Once they are built, moving between them just takes a tap of a screen or the click of a mouse. Heck, you can even occupy several of them at once if you have a decent monitor or more than one device.

So why don’t we do this?

Here are a few of the more obvious reasons that using the perfect app for the context of study rarely happens:

  • Teachers’ lack of knowledge of the options (it takes time and effort to discover what’s available).
  • Teachers’ lack of skill in using them (most interesting tools have a learning curve, and that gets steeper in inverse proportion to the softness and diversity of the toolset, so most teachers don’t even know how to make the most of what they already have).
  • Lack of time and/or money for development (a real-life application is what it contains, not just the shell that contains it, and it is not always as easy to take existing stuff and put it in a new tool as it might be in a physical space).
  • Costs and difficulties in management (each tool adds costs in managing faults, configuration, accounting for use, performance, and security).
  • Cognitive load involved for learners in adapting to the metaphors, signposts, and methods needed to use the tool itself.

All of these are a direct consequence of the very diversity that would make us want to use different apps in the first place. This is a classic Faustian bargain in which the technology does what we want, and in the process creates new problems to solve.  Every virtual system invents at least some of the dynamics of how people and things interact with it and within it. In effect, every app has its own physics. That makes them harder to find out about, harder to learn, harder to develop, costlier to manage, and more difficult to navigate than the static, fixed facilities found in particular physical locations. They are all different, there are few if any universals, and any universal today may become a conditional tomorrow. Gravity doesn’t necessarily work the same way in virtual systems.

image of a pile of containersAnd so we get learning management systems

The learning management system (LMS) kind of deals with all of these problems: poorly, harmfully, boringly, and painfully, but it does deal with them. Currently, most of the teaching at Athabasca University is through the open source Moodle LMS, lightly modified by us because our needs are not quite like others (self-pacing and all that). But Moodle is not special: in terms of what it does and how it does it, it is not significantly different from any other mainstream LMS – Blackboard, Brightspace, Canvas, Sakai, whatever.

Almost every LMS essentially automates the functions, though not exactly the form, of traditional classrooms. In other parts of the world people prefer to use the term ‘managed learning environment’ (MLE) for such things, and it is the most dominant representative of a larger category of systems usually described as virtual learning environments (VLEs) that also includes things like MOOs (multi-user dungeons, object oriented), immersive learning environments, and simpler web-based teaching systems that replicate aspects of classrooms such as Google Classroom or Microsoft’s gnarly bundle of hastily repurposed rubbish for teaching that I’m not sure even has a name yet. Notice the spatial metaphors in many of these names.

Little boxes made of ticky tacky

The people who originally designed LMSs back in the 90s (I did so myself) based their designs on the functions and entities found in a traditional university because that was their context, and that was where they had to fit. Metaphorically, an LMS or MLE is a big university building with rather uniform classrooms, with perhaps a yard where you can camp out with a few other systems (plugins, LTI hooks, etc) that conform to its requirements and that are allowed in to classrooms when invited, and a few doors and gateways (mainly hyperlinks) linking it circuitously or in jury-rigged fashion to other similarly weakly connected buildings (e.g. places to register, places to seek support, places to talk to an advisor, places to complain, places to find books, and so on). It doesn’t have metaphorical corridors, halls, common rooms, canteens, yards, libraries or any of the other things that normally make up a physical university. You rarely get to even be aware of other classrooms beyond those you are in. Some people (me in a past life) might give classrooms cute names like ‘the learning cafe’ but it’s still just another classroom. You teleport from one classroom to the next because what happens in corridors (really a big lot of incredibly important pedagogically useful stuff, as it happens) is not perceived by the designers as a useful classroom function to be automated or perhaps, more charitably, they just couldn’t figure out how to automate that.

Reified roles

It’s a very controlled environment where everyone has a programmatically enforced role (mostly reflecting traditional educational roles), that may vary according to the room, but that are far less fluid than those in physical spaces. There are strong hierarchies, and limited opportunities for moving between them. Some of those hierarchies are new: the system administrator, for instance, has way more power than anyone in a physical university to determine how learning happens, like an architect with the power to move walls, change the decor, add extensions, and so on, at will. The programmers of the system are almost god-like in their command of its physics. But the ways that they give teachers (or learning designers, or administrators) control, as designers, directors, and regulators of the classroom, are perhaps the most pernicious. In a classroom a teacher may lead (and, by default, usually does). In an LMS, a teacher (or someone playing that role) must lead. The teacher sees things that students cannot, and controls things that the students may not. A teacher configures the space, and determines with some precision how it will be used. With a lot of effort and risk, it can be made to behave differently, but it almost never is.

Functions are everything

An LMS is typically built along functional lines, and those functions are mostly based on loose, superficial observations of what teachers and students seem to do in physical classrooms. The metaphorical classrooms are weird, because they are structured by teaching (seldom learning) function rather than along pedagogical lines: for instance, if you want to talk with someone, you normally need to go to a separate enclosed area inside the classroom or leave a note on the teacher’s desk. Same if you want to take a test, or share your work with others. Another function, another space. Some have many little rooms for different things. Lectures are either literally that (video recordings) or (more usefully, from a learning perspective), text and images to be read on screen, based on the assumption that the only function of lectures is information transmission (it is so very, very much not – that’s its least useful and least effective role). There’s seldom a chance to put even put up your hand to question something. Notices can usually only be pinned on the wall by teachers. Classroom timetables are embodied in software because of course you need a rigid and unforgiving timetable in a medium that sells itself on enabling learning anywhere, any time. Some, including Moodle, will allow you to break up the content differently, but it’s still another timetable; just a timetable without dates. It’s still the teacher who sets the order, pacing and content.

Robot overlords

It’s a high-tech classroom. There are often robots there that are programmed to make you behave in ways determined by those higher in the hierarchy (sometimes teachers, sometimes administrators, sometimes the programmers of the software). For instance, they might act as gatekeepers that prevent you from moving on to the next section before completing the current one, or they might prevent you submitting work before or after a specified date. They might mark your work. There are surveillance cameras everywhere, recording your every move, often only accessible to those with more powerful roles (though sometimes a robot or two might give you a filtered view of it).

Beginnings and ends

You can’t usually go back and visit when your course is over because someone decided it would be a good idea to set opening and closing enrolment dates and assumed that, when they were done, the learning was done (which of course it never is – it keeps on evolving long after explicit teaching and testing occurred). Again, it’s because physical classes are scheduled and terms come to an end because they must be, not because it makes pedagogical sense. And, like almost everything, you can override this default, but hardly anyone ever does, because it brings back those Faustian bargains, especially in manageability.

Dull caricatures of physical spaces

Basically, the LMS is an automated set of metaphorical classrooms that hardens many of the undesirable by-products of educational systems in software in brain-dead ways that have little to do with how best to teach, and that stretch the spatial metaphors that inform it beyond breaking point. Each bit of automation and each navigational decision hardens pedagogical choices. For all the cozy metaphors, programmers invent rather than replicate physics, in the process warping reality in ways that do no good and much harm. Classrooms solved problems of physics for in-person teaching and form part of a much larger structure that has evolved to teach reasonably well (including corridors, common rooms, canteens, and libraries, as it happens). Their more visible functions are only a part of that and, arguably, not the main part. There is much pedagogy embedded in the ways that physical universities, whether by accident or design, have evolved over centuries to support learning in every quadrangle and nook of a coffee shop. LMSs just focus on a limited subset of teaching roles, and empower the teacher in ways that caricature their already excessive dominance in the classroom (which only occurred because it had to, thanks to physics and the constraints it imposed).

LMSs are crap, but they contain recognizable semblances of their physical counterparts and just enough configurability and flexibility to more or less work as teaching tools, a bit, for everyone, almost no matter what their level of digital proficiency might be. They more or less solve the Faustian bargains listed earlier, but they do so by stifling what we wanted and should have been able to do in the first place with online tools, in the process creating new and quite horrific problems, as well as demolishing most of what makes physical universities work in the first place. It never has been true that virtual learning environments are learning environments – they are only ever parts of them – and there are places to escape from them, such as the Landing, other virtual systems, or even just plain old email, but then all those Faustian bargains come back to haunt us again. There has to be a better way.

Beyond the LMS

Cognisant of the issues, Athabasca University is now some way down the path to developing its own distinctive solutions to these problems, in a multi-year multi-million-dollar initiative known as (following the spatial metaphor) the Integrated Learning Environment (ILE). The ILE is not an application. It is an umbrella term for a lot of different, usually independent systems working together as one. Though some of the most interesting opportunities are still only loosely imagined, perhaps because they cause problems that are fiendishly hard to solve (e.g. how can we integrate systems that we build ourselves without creating risks for the rest of the ILE, and what happens when they need to be maintained?) a lot of progress is being made on the non-teaching foundations on which the rest depends (student admin systems, support tools, procedures, etc), as well as on the most visible and perhaps the biggest of its parts, BrightSpace, a proprietary commercial LMS that is meant to replace Moodle, for no obvious pedagogical or technical reasons (it’s no better). It might make economic sense. I don’t know, but I do know that open source software typically costs a fair bit to own, albeit because of the things that make it a much better idea (freedom, flexibility, ownership, etc). There is probably a fair bit of time and money being spent with Desire2Learn (makers of Brightspace) on the things that we spent a fair bit of time and money on many years ago to make Moodle a bit less classroom-like. The choice no doubt has something to do with how reliably and easily it can be made to work with some of the other proprietary commercial systems that someone has decided will make up the ILE. It bothers me greatly that we are not trying hard to choose open source solutions, for reasons that will become clearer in the rest of this post. However, (pedagogically speaking) all the mainstream LMSs are much of a muchness, making the same mistakes as one another in very similar ways, so it probably won’t wreck too much of what we already do within Moodle. But, on its own, it won’t move us much further forward and we could do it better. That’s what the ILE is supposed to do – to make the LMS just a part of a much larger teaching environment, intimately connected with the rest of what the university does for or with students, and extensible with new and better ways of learning, teaching, and assessing learning.

picture of lego bricksLego bricks make poor metaphors

When we were first imagining the ILE, though the approach was admirably participative, engaging much of the university community, I was very worried by the things we were encouraged to focus on. It was all about the functionality, the usability, the design, the tools, the pedagogies, the business systems that supported them. Those things matter, for sure, and should be not be ignored, but they should and will change and grow all the time: in fact, part of the point of building this thing is to do just that. Using the city metaphor, pretty much all that we (collectively) considered were the spaces (the rooms, mainly), and the stuff that goes on inside them, much like LMS designers thought of universities as just collections of classrooms in which teaching functions were performed. Space and stuff are, not uncoincidentally, exactly what Stewart Brand identified long ago as inevitably being the fastest-changing, most volatile parts of any town or city (after site, structure, skin, and services). I’ve written a fair bit on the universality of this principle across all systems. It’s a solid structural principle that applies as much to ecosystems and educational systems as to cities. As Brand observes himself, drawing from O’Neill et al (1986), the larger, slower-changing elements of any system affect the smaller, faster-changing more than vice versa. This is for much the same reasons that path dependencies set in. It’s about the prior providing the context for what follows. Flexible things have to fit into the gaps left by less flexible, older, pre-existing things. In physical spaces, of course these tend to be bigger and/or slower, but the same is true in virtual spaces, where size seldom matters that much, but hardness (inflexibility, brittleness) really does. Though lip service was paid to the word ‘integrated’ in our discussions,  I had the strong feeling that the kind of integration we had in mind was that of a Lego set. In fact, I think we were aiming to find a ‘Lego Athabasca University’ set, with assembly instructions and a picture on the box. The vendors who came to talk with us made much of how effectively they could do that, rather than how effectively they could make it possible for others to do that.

Metaphors matter. Lego bricks have to fit together tightly, in pre-specified ways, especially if you are following a plan. If you want to move them around, you have to dismantle a bit of the structure to fit them in. It’s difficult to integrate things that are not bricks, or that are made by different toy companies to work in different ways. At best you get what Brand calls ‘magazine architecture’, or ‘no road’ architecture, beautiful, fit for purpose, intricate and solid, but slow to learn. Lego is not a terrible way to build, compared with buying everything pre-assembled, but it could be improved.

Signals and boundaries

Drawing inspiration from John Holland’s brilliant last work, Signals & Boundaries, I tried to make the case that, instead, we should be focusing on the boundaries (the interfaces between the buildings and the rest of the city), and the signals that pass between them (the people, the messages, etc, the forms they take and how they move around). In Brand’s terms, I wanted us to be thinking about skin and services, and perhaps even structure, though site – Athabasca University – was a given. Though a few people nodded in agreement, I think it mainly fell on deaf ears. We wanted oven-ready solutions, not the infrastructure to enable those solutions. Though the city metaphor works well, because we are talking about human constructions, others would result in similar ways of thinking: cells in bodies, organisms in ecosystems, brains, termite mounds, and so on. All are organized by boundaries (at many levels of hierarchy) and the signals that pass between them.

The Lego set metaphor – whether deliberately or not – seems to have prevailed for now. A lot of old buildings are being slated for demolition and a lot of new virtual buildings are now being erected as part of this development, many of them chosen not because of problems with existing buildings but so that they can more easily connect together and live in the same cloud. This will very likely work, for now, but it is not cheap and it is not flexible, especially given the fact that most of it is not open so, like a rental property, we are not allowed to fix things, add utilities, change the walls, etc, and we are wholly dependent on the landlords being nice to us and each other (knowing that some – ahem, Microsoft – have a long history of abusing their tenants). Those buildings will age. We will find them cramped. Some will age faster than others, and will have to be modified to keep up, perhaps at high cost. Companies renting them might go out of business or change their terms so we might have to demolish the buildings and rent/make new ones. We will be annoyed at how they do things, usually without asking us. We will hate the landlords who dictate what we can do and how we can do it, and who will keep upping the rent while not doing what we ask. We will want more, and the only way to get it will be to build extensions, buy new brick sets, if it is not enough to pay someone to remodel the interiors (and it won’t be). Of course, because most of the big structural elements will not be open source, we will not be able to do that ourselves.

What the ILE really should be

The ILE is, I think, poorly named, because it should not be an environment at all. Following the building metaphor, the ILE is (or should be) more like the system that connects a lot of buildings, bringing them together into a coherent, safe, livable community. It’s infrastructure and services; it is the roads, the traffic signals, the doors, the sidewalks, the water pipes, the waste pipes, the electricity, the network cables; it is the services – fire, police, schools, traffic control, etc; it is all the many rules, standards, norms and regulations that make them work together to help make an environment in which people can live, work, play, and grow. It’s part of the environment – the part that makes it work – but it is not the environment itself. The environment itself is Athabasca University, not just the tools, processes, and systems that support its functions. That includes, most importantly, the people who are part of the university, or who are visitors to it, who are not just users of the environment or dwellers in its walls, but who are or should be the most significant and visible parts of it, just as trees are part of the environment of forests, not users of the forest. Those people live in physical as well as other virtual environments (social media, Word documents, websites, etc) that the ILE can connect together too, to make them a part of it, so the spatial metaphor gets weird at this point. The ILE makes environmental boundaries fuzzy, permeable, and shifting. It’s not an ILE, it’s an ILI – an integrated learning infrastructure.

If we focused on the connections and interfaces, and on how information and processes need to pass across them, and if we thought hard about the nature of those signals, then we could build a system that is resilient, that adapts, that lasts, that grows, that evolves, with parts that we can seamless replace or improve because the interfaces – the building facades, the mains pipes, the junction boxes, etc – will mostly stay the same, evolving slowly as they should. This is about strategy, not planning,  a way of thinking about systems rather than a sequence of things to do.

Some of the key people involved in the process realize this. They are talking about standards, protocols, and projects to build interfaces between systems, and imagining future needs, though they are inevitably distracted by the process of renting Lego bricks, so I am not sure how much they will be able to stay focused on that. I hope they prevail over those who think they are building a set of classrooms and tightly connected admin offices out of self-contained interlocking bricks because our future depends on getting it right. We are aiming to grow. It just takes one critical piece in the Lego building to fail to support that, and the rest falls apart like a… well, like a pile of bricks.

References

Brand, S. (1997). How buildings learn. Phoenix Illustrated. https://www.penguinrandomhouse.ca/books/320919/how-buildings-learn-by-stewart-brand/9780140139969

Holland, J. H. (2012). Signals and Boundaries: Building Blocks for Complex Adaptive Systems. MIT Press.  https://mitpress.mit.edu/books/signals-and-boundaries

O’Neill, R.V., DeAngelis, D.L, Waide, J. B., & Allen, T. F. H. (1986). A Hierarchical Concept of Ecosystems. Princeton University Press. http://www.gbv.de/dms/bs/toc/025157787.pdf

Postman, N. (1998). Five things we need to know about technological change. Denver, Colorado, 28.  https://student.cs.uwaterloo.ca/~cs492/papers/neil-postman–five-things.html

Words will never be a substitute for grunts

https://www.aare.edu.au/blog/?p=8996

Andrew Norton claims that online learning will never be a substitute for face-to-face learning.

Indeed.

Here are some other equally useful and true claims:

  • electric vehicles will never be a substitute for gasoline-fueled vehicles;
  • cellphones will never be a substitute for desktop computers;
  • MP3s will never be a substitute for vinyl records;
  • email will never be a substitute for letters;
  • word processing will never be a substitute for handwriting;
  • TV will never be a substitute for radio;
  • aircraft will never be a substitute for ships;
  • cars will never be a substitute for horses;
  • photography will never be a substitute for painting;
  • pianos will never be a substitute for harps;
  • folios will never be a substitute for scrolls;
  • cities will never be a substitute for villages;
  • writing will never be a substitute for speaking;
  • agriculture will never be a substitute for foraging;
  • cooked food will never be a substitute for raw food;
  • words will never be a substitute for grunts;
  • walking on two legs will never be a substitute for walking on four.

Do you see any patterns here? Indeed.

Perhaps it would be better to think about what is enabled and what is enhanced, rather than mainly focusing on what is lost. Perhaps it is a chance to think about what is the same, and maybe to think about how those similarities suggest weaknesses and missed opportunities in what we used to do, and thus to improve both the older and the newer. Perhaps we could try to see the whole assembly rather than a few of its obvious parts. Perhaps we could wonder about how to fill the gaps we perceive, or look for ways that they might already be filled even though we didn’t design it that way. Perhaps we could appreciate all the opportunities and the failings of everything that is available to us. Perhaps we could notice that everything new brings new problems to solve, as well as new opportunities to discover. Perhaps we could remember that we invented new things because they did stuff the old things could not do, or because they do some things better. Perhaps we should observe that new technologies hardly ever fully replace their ancestors, because there are almost always reasons to prefer the old even when the new seem (for some or most purposes, some or most of the time) better.

As it happens, I recently wrote a paper about that kind of thing.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/8775146/words-will-never-be-a-substitute-for-grunts

What really impacts the use of active learning in undergraduate STEM education? Results from a national survey of chemistry, mathematics, and physics instructors

This is a report on an interesting study by Naneh Apkarian et al, that asked a large-ish number (3796) of in-person American STEM profs (college and university levels) about the effects of various known factors on their use of active learning approaches. To a large extent it seems that ‘active learning’ is mainly taken to mean ‘not lectures’ (which is both unfair to a minority of lectures and over-kind to a majority of alternative teaching methods). Photo of a lecture (credit to Sam Balye) It’s a good paper but the study itself has some gaping flaws (there are many chicken-and-egg issues here, lots of confounding factors, massive fuzziness, loads of systemic biases, and great complexity hidden in the details), which are, in fairness, very well recognized by the authors. Wisely, they largely avoid making causal connections and, when they do, they use other evidence beyond that of their findings to support them. Flaws aside, it’s a good contribution to our collective story, and a thoroughly interesting read. This is what they found:

1) Though active and inactive(TM) learning approaches are used across the board, lectures are far more likely to be used when class sizes are large (notably so at 60+ class sizes, predominantly so at 100+ class sizes). Depressing, but not surprising: big class sizes massively exaggerate the dominant role of the teacher, and controlling teachers faced with the scary prospect consequently tend focus on what they want to indoctrinate rather than what students need to do. It doesn’t have to be that way, but it’s how lecturing began in the first place, so it has a bit of a history.

2) If you schedule classes in lecture theatres, most people use them for lecturing. This could  be seen as useful supporting evidence for my own coparticipation model, which predicts this on theoretical grounds (large and slow technologies influence smaller and faster ones more than vice versa, defaults harden). However, it actually shows no causal relationship at all. In fact, the reasons are likely much more mundane. From my dim recollections of in-person teaching, if the course design involves lectures then you get classes scheduled into lecture theatres. If you are stuck with a lecture theatre because of dimwitted/thoughtless timetablers but want to do something different then you have a (fun and challenging) problem, but that’s not what the results here tell us.

3) There’s a small correlation between how teachers are evaluated/the perceived importance of teaching in those evaluations, and how they teach. Those who perceive teaching to be less valued tend to lecture more. This doesn’t seem very useful information to me, without a lot more information about the culture and norms of the institutions, relative weightings for research or service, and so on. Even then, it would be hard to find any causal relationships. It might show that teachers who don’t like or have time for teaching tend to lecture because it is the easiest thing for them to do, but I’d need more evidence to prove that. It might show that extrinsic motivation drives compliance (a little), but, again, it’s not even close to proven. Much more context needed.

4) Perceived job security has no obvious effects on teaching practice. This might be seen as a little surprising as there is a fairly widespread perception that people give up on doing good things when they get tenure, but it doesn’t surprise me, given the multiple factors that affect it. Whether active or not, you can always teach badly or well. The implied assumption that active approaches are riskier and more experimental is not actually true much of the time, and there’s nothing in the survey that draws out whether people are taking risks or not anyway. Most teachers continue to teach in ways that seemed to work before, and tenure makes little or no difference to that.

5a) Very active researchers tend to lecture quite a bit more than quite inactive researchers. Indeed. See 3 – if you are a researcher but not engaged in the scholarship of learning and teaching then you probably have less interest and/or time to spend on teaching well, not to mention the fact that many universities compete to get the best researchers and couldn’t care less whether they can teach or not. There is a happier corollary…

5b) those who engage in educational research of any form lecture a lot less. This speaks to common sense, to what educational research has consistently shown for about 100 years, and to the dominant educational doctrine that lectures are bad. Personally, I kind-of agree with that doctrine, but I think the problem is much subtler than simply that lectures are bad per se – lectures can play a useful role as long as you don’t ever try to use them to impart information, as long as you always remember the rest of the learning assembly into which they fit (and in which most of the learning happens), and as long as you never, ever, ever, whether implicitly or explicitly, mandate attendance. The fact that most institutional lectures fail on all three counts, and virtually all falter on at least the most important two, does indeed make them very bad, but it’s not inherent in the technology. Tain’t what you do, it’s the way that you do it.

6) People who have experienced active learning as learners are far more likely to use such approaches. Well, yes. It would be quite a surprise if, having discovered there are better ways to learn that are more satisfying and effective for all concerned, people did not then use them.

None of this is novel, all of it reconfirms (but doesn’t prove) what we already know, especially in the hard disciplinary areas of STEM. However, it will still be a useful paper to lend support to other research, or when thinking about what needs to change if institutions are trying an intervention.  I expect that I will cite it some time.

I’m more interested, though, in what lessons might be drawn for online teaching, especially in an institution like Athabasca University, where teaching is explicitly distributed, where roles in that distributed assembly are well defined and, too often, mutually exclusive, and where lecturing is almost unheard of. 

Inactive online learning

For AU courses, I think the nearest equivalent to a lecture is a heavily content-oriented course (typically greatly reliant on a textbook) with over-controlling, easily-marked assignments, and a proctored exam at the end. That’s the ‘don’t think about it’ too common default. It’s not quite that simple, because the involvement of experienced and well-educated learning designers, editors, and media experts tends to make the content quite well written and at least somewhat informed by theory. Also, compassionate tutors can fill in a lot of gaps: good tutoring is often the saving grace of an otherwise yawn-inducing pedagogical model. It’s efficient and well-honed, like the lecture, and it works most of the time because our students are wonderful and do much of the teaching themselves (despite  attempts to control them), but it’s not a great way to teach anyone. Better than lecturing, for sure, but it has to be because there’s not so much of the other stuff that teaches in in-person institutions. We do of course have a great many courses that do not follow this pattern, that involve far more active learning: it’s far from ubiquitous, even in STEM teaching.

I think that part of the reason for a preponderance of inactive approaches at AU can be found in the paper’s second finding. In our case, an LMS is the functional equivalent of a lecture theatre (with a similar emphasis on teacher control, structure, and content), especially as our self-paced model limits the options for using its already impoverished social features. There’s also a lot of rigidity in our course development processes, with a laser-sharp focus on measurable outcomes or, worse, clearly defined objectives, that tends to make things more content-driven. Perhaps a bigger part of the reason, though, relates more closely to finding 6. It’s not that our teachers aren’t engaged and interested in producing good stuff: they really are. It’s more that they don’t have a great many role models and examples to call on. This is compounded by:

  • again, the stupidity of LMS design (courses are enclosed and hidden, for the most part),
  • a lack of sharing of tacit knowledge between teachers (we tend to only meet and communicate with a defined purpose, leaving little time for incidental and passing exchanges), and
  • our contact with students tends to be similarly instrumental and formal so we don’t usually learn as much about how they feel about other courses as in-person teachers.

All in all, though it does happen, and we are constantly getting better at it, good ideas still do not spread easily enough. In fairness, that’s also true of many in-person institutions, but at least they have serendipity, greater visibility of teaching, and simpler ways to connect socially for free, because physics. We have to actively design our own social physics, and the results of doing are seldom particularly great. As we move towards become a near-virtual institution (or even nearer-virtual) we are really going to have to work much harder on that.

On the bright side, we are fortunate to have a vast number of faculty (around 40%) who fall into the 5b category. If only we could do a better job of sharing their learning. That, of course, is a lot of the reason I am writing this, and it was a big impetus behind why we created Athabasca Landing in the first place.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/8727582/what-really-impacts-the-use-of-active-learning-in-undergraduate-stem-education-results-from-a-national-survey-of-chemistry-mathematics-and-physics-instructors

Incarceration in Real Numbers

This is stunning, both in terms of content and in terms of its presentation.

The content is depressingly familiar – the fact that the US incarcerates (in real numbers and as a percentage of population) vastly more people than any other country in the world, the fact that it really likes to do so to visible minorities in particular, and the fact that the system is shockingly corrupt at every level – but the detail is deeply disturbing. I was particularly amazed to learn that around 2% of those vast numbers of incarcerated Americans have actually had a trial. It provides lots of effective comparisons (with other countries, with different demographics, between different demographics, etc) that provide a good sense of the scale of the problem.

What makes this so powerful, though, is the brilliant, JavaScript-powered, interactive presentation. This is one extraordinarily long web page that shows individual images (in symbol form) of all 2.3 million incarcerated Americans, including a count of where you are now to put this into context. To read it, you have to keep scrolling. Keep scrolling, even if you get tired: it’s worth it. It’s particularly effective on a tablet, and less likely to lead to RSI. Some ingenious (but not at all complicated) coding brings phrases, infographics, statistics, and the occasional interactive element into view along the way, hovering for a while whilst you scroll, or becoming part of what you see as you scroll. You control this – you can slow down, go back, pause, and interact with much of the content as it appears. Watch out for some brilliant ways of representing proportions of population, showing graphs at their true scale, and emphasizing agency by showing the likely effects of different interventions.

The experience is deeply visceral – it’s an engagement with the body, not just the eye and brain.  The physical act of scrolling repeatedly hammers home what the numbers actually mean, and the fact that you play such an active role in revealing the content makes it much more impactful than it would be were it simply presented as text and figures, or hyperlinks. I’ve not seen this narrative form used in such a polished, well-integrated way before. This is a true digitally native artwork. The general principle is not dissimilar to that of most conventional e-learning content of the simplest, most mundane next-previous-slide variety. In fact it’s simpler, in many ways. The experience, though, is startlingly different.

It’s quite inspiring. I want to explore this kind of approach in my own teaching, though I don’t know how often I could use it before the effect gets stale, there may be some accessibility issues, and, if it were used in a course context as a means of sharing knowledge, it could easily become as over-controlling as a lecture. That said, it’s a brilliant way to make a point, far more powerfully than a PowerPoint, and  more engagingly than text, images, or video alone. It could be very useful. At the very least, it might provide a little inspiration for my students seeking ideas for using JavaScript on their sites.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/8477597/incarceration-in-real-numbers