Requiem for an email address

Some time today my email address and all its aliases at the University of Brighton will suddenly cease to exist, vacuumed away by an automated script that doesn’t care.

It has been 30 years since I sent my first ever SMTP email from that address, from a Vax terminal, carefully ending it with a single dot on its own line to signal the end of the message. Among the (yes) millions of emails (for years, well over 100 every day) that have since been sent to and from the account have been announcements of the births and deaths of many loved ones, job offers, notifications of awards, letters to and from long lost friends, and a metric tonne of spam and bacn. Among those messages were expressions of love, sorrow, pleasure, anger, and joy. It has been the tenuous thread connecting me with those I love when all others have failed. It has helped me make new friends and keep old ones. It has taught me, and I have taught with it. It has given me delight, angst, inspiration, frustration, fear, and exaltation. It has, in the past, been so much a part of my identity that my students used to refer to me as jon-dot-dron. I’ve been through eight physical addresses and at least as many phone numbers in the time I’ve had the account. It has been my prosthetic memory and my filing system. Its archives contain (or contained) records of the history of half my life. Some of those emails are what made that history. There are/were messages in it from more than a few loved ones who have since died, or with whom I’ve lost contact. It followed me through many jobs and roles at the University of Brighton – student, IT manager, lecturer, honorary fellow, and more.

But the Centre for Learning and Teaching to which my final role was attached is no more, and so my email account must now die with it.

I can think of no other digital entity associated with me that has lasted as long as that email address apart from, perhaps, the user account with which it was associated (which is also disappearing today). The nearest thing to it was my ‘Ship of Theseus’ PC that existed for over 20 years, from the 1980s to the 2010s, every single part of which had been replaced multiple times, and which (like the Ship of Theseus itself) had spawned a few offspring along the way that were made from its discarded parts. I was a little sad to let go of that, too, but its surviving contents lived on in something better, so it was no great loss. This is a bit different.

Pragmatically, it is pointless for me to retain my Brighton email account. With just a handful of exceptions a year, the only emails ever sent to it nowadays are spam or bacn, I hardly ever send emails from it, and it takes effort to maintain the thing. But I will miss it. The comfortable fiction that we are just what goes on in our brains and bodies has seldom seemed less believable. Our minds extend into those around us, the artefacts we create, the artefacts we use, the people we cherish. Those emails contained a bit of me, and a bit of all those who sent them. It was where our minds met. I think this should be recognized with more than a shrug. And so I write this both to celebrate the existence and to mourn the passing of a little bit of me. 

jon.dron@brighton.ac.uk/jd29@bton.ac.uk

.

Nobody has ever learned anything at a distance, and no one ever goes to a distance institution

Nobody learns anything online or at a distance. Nothing at all. You are always learning it where you are now. All learning is in-person learning, and it all takes place within a physical environment, part of which (only a part) may include whatever technologies you might be using to talk with people, read, watch, listen, and so on.

But there’s a distance component to all in-person education, too. People who learn with teachers in a physical space are almost always also interacting with other participants in the teaching role at a distance, usually in time and space – authors, classroom designers, editors, illustrators, timetablers, curriculum designers, and so on. And, for ‘in-person’ institutional learners, most of the learning itself also usually occurs at a distance, outside the classroom. This is most tangible in the form of assignments and homework but, if teaching works, sense-making connections always occur after the lesson is over, and continue to do so long after (sometimes decades after) the teaching event, almost never in the same place that the lesson originally occurred. So all learning is distance learning, in the sense of occurring somewhere and somewhen other than where and/or when teaching occurred.

It is not surprising, therefore, that no significance difference is normally found between online and in-person learning outcomes because they are essentially the same thing.

That doesn’t mean that there are no consistent differences between the experiences of what we describe as online and in-person learners: very far from it. Some of those differences are inherent in the medium, whether online or in-person. But the big differences that actually make a difference are not in learning: they are in teaching.

There are (or should be) huge differences between distance/online teaching and in-person teaching. The most important differences are not technological, as such, nor do they lie in the physical distance between learners and teachers. Michael Moore very usefully talks of distance in terms of structure and dialogue to describe the transactional distance that matters more but, as I observed in my first book, from a system dynamics perspective, transactional distance is mainly a measure of the locus of control, not structure or dialogue as such. There are other differences that matter, but control is the big one.

Control in in-person teaching

Pedagogies are solutions to problems, and the physical context is rife with problems, most notably that it makes it far more likely that teachers will control much of the process. There are a great many reasons for this, most of which have nothing at all to do with pedagogical intent: it’s mainly physics, economics, and biology, and the consequences that follow. Though many teachers try to avoid it, doing so is a seriously upstream struggle. It causes immense problems, primarily because of the great harm it does to intrinsic motivation. Learners lack autonomy and are often over-challenged or under-challenged (thus undermining the two central foundations of intrinsic motivation) because, by default, everyone is forced to follow the same pace and method, determined by the teacher.  Good in-person pedagogies compensate for these inherent weaknesses, by allowing (emphasis on allowing) learners to personalize their own learning, by engaging in dialogue, by building communities, by helping learners to find their own motivation, and so on.

Control in online teaching

Without significant coercion, the learner is always far more autonomous in almost any online or distance teaching context. Students don’t need to follow the teacher’s plan because they are not bound to a scheduled classroom, with all the problems of being heard, being present, and working in lock-step together that arise from it.  Unfortunately, far too many online teachers assume that they have the same level of control as their in-person counterparts and, usually, it becomes a partly self-fulfilling assumption through coercive methods like frequent grading, draconian scheduling, and tests. They consequently often make use of very similar pedagogies to those of their in-person counterparts, struggling to find simulacra or workarounds for the affordances of physical spaces that are no longer available, and vainly believing that the learner is going to follow the path that they have determined for them. An unfortunate unintentional consequence of in-person teaching is thus too readily accepted as teaching’s central motif.

To make matters more difficult, educational institutions impose other stupid ideas that are side-effects of teaching in physical classrooms like fixed-length (or multiples of fixed lengths) courses, deadlines, and failure (what the heck?). I think this picture helps to illustrate my feelings about this:

horse pulling a car

Dealing with this kind of problem may require some big changes at an institutional level because teachers too rarely have much choice as to how long their courses might be, or whether students should receive grades for them, or how they are scheduled, and so on.

Outside of arbitrary institutional constraints, online courses do not have to be a particular length, because more complex scheduling is possible (and easily automated) and, if they are self-paced, there’s no good reason for them to have any schedule at all, nor for them to end on a particular date, as long as they can be funded. Credentialing and learning are two completely different processes that (thanks to the motivational impacts) are in many ways mutually exclusive. They must therefore be decoupled, as much as possible. It makes no sense to talk definitively about failure when you are learning: learning is either accomplished or not accomplished yet, and failure is an integral part of the process of accomplishment (ask any gamer). And, though they might not always get a credential on the first try, students never need to irrevocably fail to get them: they can just keep going until they succeed, or until they lose interest, much as we do for driving tests.

Distributed in-person teaching

Such issues highlight the fact that it is not just the designated teacher who teaches. Obviously, the main teacher in any learning transaction is the learner, sometimes followed by the designated teacher or writer of a textbook, but the rules, structures, processes and methods that define the educational context also teach. So do other students, especially in an in-person context thanks to the fact that they are all forced to be in one place at one time. In an in-person context, from the simple fact of having to turn up at a particular place and time to the structures of courses, assessments, classroom spaces, cafes, and schedules, the institutional context controls the learning process in profound ways.

Again, for teachers, good pedagogies have to compensate for the problems that such things cause, as well as to take advantage of the positive affordances the physical context provides. There are many of those. A great deal of learning can be assumed to occur in journeys to and from classrooms, in canteens, in common rooms, in libraries, and in other shared spaces, for example. Combined with the fact that a great deal of the organization is done by others, and that institutional credentials motivate (not in a good way), institutions (not just teachers) themselves teach through their physical, temporal, and organizational form. Combined with the many other teachers involved in the process (the learners themselves, textbook authors, illustrators, designers, etc) this means that in-person teachers don’t actually have to teach very well in order for their students to succeed. The systems mean that students are drowning in a sea of teachers.

Distributed online teaching

The online teaching context is, in principle though not so much in practice, more malleable, diffuse, and affording of learner control, but it almost always lacks much in the way of controllable infrastructure that learners can safely be assumed to inhabit, so teaching generally needs to be pretty good because, without care, that might be all there is. However, there are ways to help provide a bit more of the structure that also teaches. Some people try to create simulations of the in-person infrastructure, such as learning cafes, less formal social spaces (such as Athabasca Landing), etc but, though they can help a bit, they seldom work very well. Partly, this is because of the too common focus on explicit outcomes and grading found in most institutional teaching together with failure by students and teachers to recognize the critical role of in-between spaces in learning. Mainly, though, it’s because it’s not just there: students aren’t going to pass it on their way to somewhere else or be there for other reasons (like a need for rest or refreshment). They have to intentionally visit, typically with a purpose in mind but, as the main value of it is its purposelessness, that’s not often going to happen. It would be better to embed such spaces in the intentional teaching space, to allow informal interaction everywhere, but too few teaching systems (notably none of the mainstream LMSs) support that.

It can help a little to make the need for such engagement more explicit in the teaching process: to tell students it is a good idea to engage beyond the course. It doesn’t have to be virtual, or planned, or catered for by the institution or teacher. We could just suggest that learners talk about what they’ve learned with someone they know, or that they should visit a place where people do talk about such things, or share via social media. But we can and should provide social spaces where they can interact with one another beyond the course, too.

Another way is to acknowledge the physical and virtual context of the learner, and to design flexible learning experiences that allow them to apply what they are learning to where they are, or to make use of what is around them (virtually and physically) to support the learning process. This is a pedagogical solution that, for some subjects, fits very well. For instance, I can rely on nearly all of my students working or studying in a context that can be used for analyzing and building information systems. It’s harder in the case of subjects that are much more abstract, or where engaging directly with the subject might be dangerous or prohibitively expensive (e.g. nuclear physics or medicine).

Really, though, the big problem is one of perspective. It’s that we see our virtual institutions as analogues of our physical institutions, not as something really very different. Even quite enlightened edtech folk talk of students bringing their own devices, or bringing their own networks to the learning space. That’s laudable, in a way, but it’s completely the wrong way round. Instead, online and distance students bring their own institutions (plural), or bring their own courses into their own spaces. The need to go to an institution is a side-effect of the physics that co-determines how traditional teaching occurs. Students shouldn’t need to go to an online institution; institutions should come to them. That is, in fact, the reality of learning through online means, but almost everything we do works on the assumption that it is the other way round: that they visit us.

Conclusion

We (the teachers) are not, cannot be, and should not try to be the sole arbiters of how our distance/online students learn. Unless they want it, we should not even be managers or leaders of it. Instead, we should think of ourselves as parts of their support networks, available to provide help and direction as and when it is needed. If they want to delegate some of the control of the process to us then that’s great, because it keeps us employed and we’re often pretty good at it because it’s our job, but we should not take it unbidden.

We really need to let go of the notion that learning only takes place when and where our teaching happens,  and that we are the sole directors of it. We need to acknowledge everything that learners bring with them, in prior learning, in digital and physical systems, in networks, and in pedagogical tools. But it’s not about bringing stuff to us: it’s about bringing it to their own learning. Above all, we need to recognize that online students do not come to institutional environments, but that they bring those institutions into their own environments. From that simple shift in perspective, myriad improvements follow.

Challenges of the Physical: slides from my keynote at XII Conferência Internacional de Tecnologias de Informação e Comunicação na Educação, September 2021

Here are the slides from my opening keynote today for the XII Conferência Internacional de Tecnologias de Informação e Comunicação na Educação in Portugal. first slide of the presentation

The conference theme was ‘challenges of the digital’ so I thought it might be fun to reverse the problem, and to think instead about the challenges of in-person education. In this presentation I imagined a world in which in-person teaching had never been invented, and presented a case for doing so. In fairness, it was not a very good case! But I did have fun using some of the more exotic voice changing features of my Voicelive Play vocal processor (which I normally use for performing music), presenting some of the arguments against my suggestions in different voices using a much better mic than my usual (pretty good) Blue Yeti. I might not use the special effects again that often, but I was quite impressed with the difference the better microphone made.

My central points (mostly implicit until the end) were:

  • That the biggest challenge of the digital is all the baggage that we have inherited from in-person teaching, and our continuing need to interoperate with in-person institutions.
  • That pedagogies are neither universal nor neutral. They are solutions to problems of learning in a particular context, in assembly with countless constraints and possibilities provided by that context: people, tools, structures, methods, systems, and so on.
  • That solutions to learning in a physical context – at least in the one-to-many model of traditional education systems – inevitably lead to a very strong power imbalance between teacher and learner, where the teacher is in control of every moment that the teaching event occurs. This has many repercussions, not least of which being that needs for autonomy and competence support are very poorly addressed (though relatedness comes for free), so it is really bad for intrinsic motivation.
  • Thus, the pedagogies of physical spaces have to compensate for the loss of control and achievable challenge that they naturally entail.
  • That the most common approach – and, again, an almost inevitable (i.e. the shortest path) follow-on from teaching a lot of people at once – involves rewards and punishments, that massively impair or destroy intrinsic motivation to learn and, in most cases, actively militate against effective learning.
  • That the affordances of teaching everyone the same thing at once lead fairly naturally to credentials for having learned it, often achieved in ‘efficient’ ways like proctored exams that are incredibly bad for learning, and that greatly reinforce the extrinsic motivation that is already highly problematic in the in-person modality. The credentials, not the learning, become the primary focus.
  • That support for autonomy and competence are naturally high in online learning, though support for relatedness is a mix of good and bad. There is no need for teachers being in control and, lacking most of the means of control available to in-person teachers, the only reliable way to regain it is through rewards and punishments which, as previously mentioned, are fatal to intrinsic motivation.
  • That the almost ubiquitous ways that distance educators inherit and use the pedagogies, methods, and structures of in-person learning – especially in the use of coercion through rewards and punishments (grades, credentials, etc) but also in schedules, fixed-length courses, inflexible learning outcomes, etc – are almost exactly the opposite of what its technologies can best support.

Towards the end, acknowledging that it is difficult to change such complex and deeply entangled systems (much though it is to be desired) I presented some ways of reducing the challenges of the physical in online teaching, and regaining that lost intrinsic motivation, that I summarized thus:

  • Let go (you cannot and should not control learning unless asked to do so), but stay close;
  • Make learning (not just its products) visible (and, in the process, better understand your teaching);
  • Make learning shared (cooperation and, where possible, collaboration built in from the ground up);
  • Don’t ever coerce (especially not through grades);
  • Care (for learners, for learning, for the subject).

It’s a theme that I have spoken and written of many, many times, but (apart from the last few slides) the way I presented it this time was new for me. I had fun pretending to be different people, and the audience seemed to like it, in a challenging kind of a way. There were some great questions at the end, not all of which I had time to answer, though I’m happy to continue the conversation here, or via Twitter.

A modest proposal for improving exam invigilation

There has been a lot of negative reaction of late to virtual proctors of online exams. Perhaps students miss the cheery camaraderie of traditional proctored exams, sitting silently in a sweaty room with pen and paper, doing one of the highest stakes, highest stress tasks of their lives, with someone scrutinizing their every nervous tic whose adverse judgment may destroy their hopes and careers, for the benefit of an invisible examiner whose motives and wishes are unclear but whose approval they dearly seek. Lovely. Traditional. Reassuring. A ritual for us all to cherish. It’s enough to bring a tear to the eye.

But exams cost a huge amount of money to host and to invigilate. It is even worse when one of the outcomes might, for the student or the invigilator, be death or disability due to an inconvenient virus.

I have a better solution.

photo of a toy robotInstead of costly invigilators and invigilation centres, all we need to do is to send out small (returnable, postage-paid) robots to students’ homes. A little robot sitting on the student’s desk or kitchen table as they sit their written exam (on paper, of course – tradition matters), recording every blink, watching their fingers writing on the paper, with 360 degree panoramic camera and the ability to zoom in on anything suspicious or interesting. Perhaps it could include microphones, infrared and microwave sensors, and maybe sensors to monitor skin resistance, pulse, etc, in order to look for nefarious activities or to call the ambulance if the student seems to be having a heart attack or stroke due to the stress. It could be made to talk, too. Perhaps it could offer spoken advice on the process, and alerts about the time left at carefully selected intervals. Students could choose the voice. It would also allow students to sit exams wherever and whenever they please: we are all in favour of student choice. With a bit of ingenuity it could scan what the students have written or drawn, and send it back to an examiner. Or, with a bit more ingenuity and careful use of AI, it could mark the paper on the spot, saving yet more money. Everyone wins.

It would be important to be student-centric in its design. It could, for instance, be made to look like a cute little furry animal with googly eyes to put students more at ease. Maybe it could make soothing cooing noises like a tribble, or like a cat purring. Conversely, it could be made to scuttle ominously around the desk and to appear like a spider with venomous-looking fangs, making gentle hissing noises, to remind students of the much lamented presence of in-person invigilators. Indeed, maybe it could be made to look like a caricature of a professor. More advanced models could emit bad smells to replicate invigilator farts or secret smoking habits. It could be made small and mobile, so that students could take it with them if they needed a bathroom break, during which it might play soothing muzak to put the student at ease, while recording everything they do. It would have to be tough, waterproof, and sterilizable, in order to cope with the odd frustrated student throwing or dunking it.

Perhaps it could offer stern spoken warnings if anomalies or abuses are found, and maybe connect itself to a human invigilator (I hear that they are cheaper in developing nations) who could control it and watch more closely. Perhaps it could be equipped with non-lethal weaponry to punish inappropriate behaviour if the warnings fail, and/or register students on an offenders database.  It could be built to self-destruct if tampered with.

Though this is clearly something every university, school, and college would want, and the long-term savings would be immense, such technologies don’t come cheap. Quite apart from the hardware and software development costs, there would be a need for oodles of bandwidth and storage of the masses of data the robot would generate.

I have a solution to that, too: commercial sponsorship.

We could partner with, say, Amazon, who would be keen to mine useful information about the students’ surroundings and needs identified using the robot’s many sensors. A worn curtain? Stubborn stains? A shirt revealing personal interests? Send them to Amazon! Maybe Alexa could provide the voice for interactions and offer shopping advice when students stop to sharpen their pencils (need a better pencil? We have that in stock and can deliver it today!). And, of course, AWS would provide much of the infrastructure needed to support it, at fair educational prices. I expect early adopters would be described as ‘partners’ and offered slightly better (though still profitable) deals.

And there might be other things that could be done with the content. Perhaps the written answers could be analyzed to identify potential Amazon staffers. Maybe students expressing extremist views could be reported to the appropriate government agency, or at least added to a watch-list for the institution’s own use.

Naysayers might worry about hackers breaking into it or subverting its transmissions, or the data being sent to a country with laughable privacy laws, or the robot breaking down at a critical moment, or errors in handwriting recognition, but I’m sure that could be dealt with, the same as we deal with every other privacy, security, and reliability issue in IT in education. No problem. No sir. We have lawyers.

The details still need to be ironed out here and there, but the opportunities are endless. What could possibly go wrong? I think we should take this seriously. Seriously.

Asus Flip C234 Chromebook review

I’ve been thinking for some time that I need to investigate Chromebooks – at least, ever since Chrome OS added the means to run Android and Linux apps alongside Chrome web apps. I decided to get one recently because I was going on a camping trip during which I’d be required to do some work, and the (ridiculously many) machines I already had were all some combination of too limited, too unreliable, too fragile, too heavy, too power-hungry, too buggy, or too expensive to risk in a muddy campsite. A Chromebook seemed like a good compromise. I wanted one that was fairly cheap, had a good battery life, was tough, could be used as a tablet, and that was not too storage-limited, but otherwise I wasn’t too fussy. One of the nice things about Chromebooks is that, notwithstanding differences in hardware, they are all pretty much the same. 

After a bit of investigation, I noticed that an Asus C234 Flip with an 11.6″ screen was available at BestBuy for about $400, which seemed reasonable enough, based on the advertised specs, and even more reasonable when they lopped $60 off the price for Labour Day. Very unusually, though, the specs on the site were literally all that I had to go on. Though there are lots of Flip models, the C234 is completely unknown, apparently even to Asus (at least on its websites), let alone to reviewers on the web, which is why I am writing this! There’s no manual with it, not even on the machine itself, just a generic leaflet. Following the QR code on the base of the machine leads to a generic not-found page on the Asus site. Because it looked identical to the better-known Flip C214 I thought BestBuy must have made a labelling mistake but the model number is clearly printed in two places on the base. Despite the label it is, in fact, as I had guessed and eventually confirmed by circuitous means, identified by Asus themselves as a Flip C214MA, albeit with 64GB of storage rather than the more common 32GB and a very slightly upgrade Intel Celeron N4020 CPU instead of an N4000. This model lacks the option of a stylus that is available for many C214 models (pity – that seemed very nice). It was not quite the cheapest Chromebook to fit the bill, but I trust Asus a lot and have never regretted buying one of their machines over about 20 years or more of doing so quite frequently. They really know how to design and build a great computer, and they don’t make stupid compromises even on their cheapest machines, be they PCs, tablets, phones, or netbooks. Great company in a sea of dross.

Hardware overview

The C234 comes with only 4GB RAM, which means it can get decidedly sluggish when running more than a handful of small apps, especially when some of them are running under Linux, but it is adequate for simple requirements like word processing, light photo editing, audio recording, web browsing, email, webinars, etc: just the use cases I had in mind, in fact. The 64GB of storage is far less than I’d prefer but, I calculated, should be fine for storing apps. I assumed (wrongly) that any data I’d need locally could be kept on the 256GB SDXC card that I bought to go with it so I was – foolishly – not too concerned. It turns out that Android apps running under ChromeOS that can save data to the SD card are few and far between, and ChromeOS itself is barely aware of the possibility although, of course, most apps can read files from just about anywhere so it is not useless. Unfortunately, the apps that do not support it include most video streaming services and Scribd (which is my main source of ebooks, magazines, and audiobooks) – in other words, the ones that actually eat up most space. The physical SD slot is neat – very easy to insert and difficult (but not too difficult) to remove, so it is not going to pop out unexpectedly.

The computer has two full-spec USB-C ports that can be used for charging the device (45W PD, and not a drop less), as well as for video, external storage, and all the usual USB goodness. It has one USB-A 3.0 socket, and a 1/8″ combo mic/headphone socket that can take cellphone headsets or dedicated speakers/microphones. The wifi and bluetooth are both pretty modernish mainstream, adequate for all I currently have but maybe not everything I might buy next year. There is a plastic tab where a stylus is normally stored but, buyer beware, if the detailed model number doesn’t end in ‘S’ then it does not and cannot support a stylus: no upgrade path is available, as far as I can tell. Wifi reception is very good (better than my Macbook Pro), but there is no WiFi6. There’s no cellular modem, which is a pity, but I have a separate device to handle that. It does have a Kensington lock slot, which I guess reflects how it might be used in some schools where students have to share machines. Going back to the days when I used to manage university computer labs, I would have really liked these machines: they are very manageable. A Kensington lock isn’t going to stop a skilled thief for more than a couple of seconds but, as part of a security management strategy, they fit well.

The battery life is very good. It can easily manage 11-12 hours between charges from its 50WH battery, and could almost certainly do at least a couple more hours if you were not stretching its capabilities or using the screen on full brightness (I’m lazy and my eyesight is getting worse, so I tend to do both). It charges pretty quickly – I seldom run it down completely so the longest I’ve needed to plug it in it dropped below 20%, has been a couple of hours. It uncomplainingly charges from any sufficiently powerful USB-C charger.

As a laptop the Flip feels light in the hand (it weighs in at a little over a kilogram) but, as a tablet, it is pretty heavy and unwieldy and the keyboard cannot be detached. This is a fair compromise. Most of the time I use it as a laptop so I’d rather have a decent keyboard and a battery that lasts, but it is not something you’d want to hold for too long in the kind of orientations you might with an iPad or e-reader. Its 360 degree screen can fold to any intermediate angle so it doesn’t need a separate stand if you want to perch it on something, which is handy in a tent: while camping, I used it in both (appropriately) tented orientation and wrapped over a big tent pocket so that it was held in place by its own keyboard.

Video and audio

The touch screen is OK. At 1366×768 resolution and with a meagre 162 pixels per inch it is not even HD, let alone a retina display. It is perfectly adequate for my poor eyesight, though: fairly bright, acceptable but not great viewing angles, very sharp, and not glossy (I hate glossy screens). I’d much rather have longer battery life than a stunning display so this is fine for me. Viewing straight-on, I can still read what’s on the screen in bright sunshine and, though it lacks a sensor to auto-adjust the brightness, it does have an automatic night-time mode (that reddens and dims the display) that can be configured to kick in at sunset, and there are keyboard keys to adjust brightness. The generic Intel integrated GPU chip works, but that’s all I can say of it. I’d certainly not recommend it for playing graphics intensive games or using photoshop, and don’t even think about VR or compiling big programs because it ain’t going to happen.

The speakers, though, are ridiculously quiet: even when pumped up to full volume a little rain on the tent made it inaudible, and they are quite tinny. I’m guessing that this may have a bit to do with its target audience of schoolkids – a lack of volume might be a good thing in a classroom. The speakers are down-facing so it does benefit from sitting on a table or desk, but not a lot. The headphone volume is fine and it plays nicely with bluetooth speakers. It has a surprisingly large array of 5 microphones scattered quite widely that do a pretty good job of echo cancellation and noise reduction, providing surprisingly good sound quality (though not exactly a Blue Yeti).

It has two cameras, one 5K device conventionally placed above the screen when used in laptop mode, the other on the same surface as the keyboard, in the bottom right corner when typing, which is weird until you remember it can be used in tablet mode, when it becomes a rear-facing camera. Both cameras are very poor and the rear facing one is appalling (not even 1K resolution). They do the job for video conferencing, but not much else. That’s fine by me: I seldom need to take photos with my notebook/tablet and, if I want better quality, it handles a Logitech webcam very happily.

Input devices

The keyboard is a touch smaller than average, so it takes a bit of getting used to if you have been mostly using a full-sized keyboard, but it is quite usable, with plenty of travel and the keys and, though each keypress is quite tactile so you know you have pressed it, it is not clicky. It is even resistant to spilt drinks or a spot or two of rain. Having killed a couple of machines this way over the past thirty years or so (once by sneezing), I wish all keyboards had this feature. The only things I dislike about it are that it is not backlit (I really miss that) and that the Return key is far too small, bunched up with a load of symbol keys and easily missed. Apart from that, it is easy to touch type and I’d say it is marginally better than the keyboard on my Macbook Pro (2019 model). The keys are marked for ChromeOS, so they are a bit fussy and it can be hard to identify which of the many quote marks are the ones you want, because they are slightly differently mapped in ChromeOS, Android, and Linux. On the other hand I’m not at all fond of Chrome OS’s slightly unusual keyboard shortcuts so it’s nice that the keys tell you what they can do, even though it can be misleading at times.

The multi-touch screen works well with fingers, though could be far more responsive when using a capacitive stylus: the slow speed of the machine really shows here. Unless you draw or write really slowly, you are going to get broken lines, whether using native Chrome apps, Android, or Linux. I find it virtually unusable when used this way.

The touchpad is buttonless and fine – it just works as you would expect, and its conservative size makes it far less likely to be accidentally pressed than the gigantic glass monstrosity on my Macbook Pro. I really don’t get the point of large touchpads positioned exactly where you are going to touch them with your hand when typing.

There is no fingerprint reader or face recognition, though it mostly does unlock seamlessly when it recognizes my phone. It feels quite archaic to have to enter a password nowadays. You can get dongles that add fingerprint recognition and that work with Chromebooks, but that is not really very convenient.

Build

The machine is made to be used by schoolkids, so it is built to suffer. The shell of the Flip is mostly made of very sturdy plastic. And I do mean sturdy. The edges are rubberised, which feels nice and offers quite a bit of protection. Asus claim it can be dropped onto a hard floor from desk height, and that the pleasingly textured covering hides and prevents scratches and dents. It certainly feels very sturdy, and the texture feels reassuring in the hand, with a good grip so that you are not so likely to drop it. It doesn’t pick up fingerprints as badly as my metal-bodied or conventional plastic machines. Asus say that the 360 degree hinges should survive 50,000 openings and closings, and that the ports can suffer insertion of plugs at least 5,000 times. I believe them: everything about it feels well made and substantial. You can stack 30kg on top of it without it flinching. For the most part it doesn’t need its own case. I felt no serious worries throwing this into a rucksack, albeit that it is neither dust nor water resistant (except under the keyboard). Asus build it to the American military’s MIL-STD 810G spec, which sounds impressive though it should be noted that this is not a particular measure of toughness so much as a quality control standard to ensure that it will survive the normal uses it is designed for. It’s not made for battlefields, boating, or mountaineering, but it is made to survive 11-year-olds, and that’s not bad.

It’s not unattractive but nor is it going to be a design classic. It is just a typical old fashioned fairly non-descript and innocuous small laptop, that is unlikely to attract thieves to the same extent as, say, a Microsoft Surface or Macbook Pro. It has good old fashioned wide bezels. I realize this is seldom considered a feature nowadays, but it is really good for holding it in tablet mode and helps to distinguish the screen from the background. It feels comfortable and familiar. In appearance, it is in fact highly reminiscent of my ancient Asus M5N laptop from 2004, that still runs Linux just fine, albeit without a working battery, with only 768KB of RAM and with, since only recently, a slightly unreliable DVD drive – Asus really does make machines that last.

The machine is fanless so it is quite silent: I love that. Anything that moves inside a computer will break, eventually, and fans can be incredibly annoying even when they do work, especially after a while when dust builds up and operating system updates put more stress on the processor. If things do break, then the device has a removable panel on the base, which you can detach using a single standard Philips screwdriver, and Asus even thoughtfully provide a little thumbnail slot to prise it up. Through this you can access important stuff like storage and RAM, and the whole machine has a modular design that makes every major component easily replaceable – so refreshing after the nightmares of trying to do any maintenance on an Apple device. Inside, it has a dual core Celeron of some kind that can be pushed up to 2800 MHz – an old and well-tried CPU design that is not going to win any performance prizes but that does the job pretty well. From my tech support days I would be a bit bothered leaving this with young and inquisitive kids – they really like to see how things work by doing things that would make them not work. I lost a couple of lab machines to a class of kids who discovered the 240/110v switch on the back of old PCs.

It does feel very sluggish at the best of times after using a Macbook Pro – apps can take ages to load, and there can be quite a long pause before it even registers a touch or a keypress when it is running an app or two already – but it is less than a tenth of the price, so I can’t complain too much about that. It happily runs a full-blown DBMS and web server, which addresses most of my development needs, though I’d not be keen on running a full VM on the device, or compiling a big program.

Included software

There are no Asus apps, docs, or customizations included. It is pure, bare-bones, unadulterated Chrome OS, without even a default Asus page to encourage registration. This is really surprising. Eventually I found the MyAsus (phone) app for Android on Google’s Play store, which is awful but at last – when I entered the serial number to register the machine – it told me what it actually was, so I could go and find a manual for it. The manual contains no surprises and little information I couldn’t figure out for myself, but it is reassuring to have one, and very peculiar that it was not included with the machine. This makes me suspect that BestBuy might have bought up a batch of machines that were originally intended for a (large) organization that had laid down requirements for a bare-bones machine. This might explain why it is not listed on the Asus site.

ChromeOS

I may write more about ChromeOS at some later date – the main reason I got this device was to find out more about it – but I’ll give a very brief overview of my first impressions now. ChromeOS is very clever, though typical of Google’s software in being a little clunky and making the computer itself a little bit too visible: Android suffered such issues in a big way until quite recently, and Android phones still feel more like old fashioned desktop computers than iPhones or even Tizen devices.

Given that it is primarily built to run Chrome apps, It is surprisingly good at running Android apps – even VPNs – though integration is not 100% perfect: you can occasionally run into trouble passing parameters from a Chrome app to Android, for instance, some Android apps are unhappy about running on a laptop screen, and not all understand the SD card very well. Chrome apps run happily without a network, so you are not tied to the network as much as with other thin-client alternatives like WebOS.

It also does a really good job of running and integrating Linux apps. They all run in a Debian Linux container, so a few aspects of the underlying machine are unavailable and it can be a little complex when you want to use files from other apps or peripherals, but it is otherwise fully featured and utilizes much of the underlying Debian system that runs ChromeOS itself, so it is close to native Linux in performance. The icons for Linux apps appear in the standard launcher like any other app and, though there is a little delay when launching the first Linux app when it starts the container, once you have launched one then the rest load quickly. You do need a bit of Linux skill to use it well – command line use of apt is non-negotiable, at least, to install any apps, and integrating both Android and ChromeOS file systems can be a little clunky. Linux is still a geek option, but it makes the machine many times more useful than it would otherwise be. There’s virtually nothing I’d want to do with the machine that is constrained by software, though the hardware creates a few brick walls.

Integration between the three operating systems is remarkably good altogether but the seams show now and then, such as in requiring at least two apps for basic settings (ChromeOS and Android), with a handful of settings only being available via the Chrome browser, or in not passing clipboard contents to the Linux terminal command line (though you can install an x-terminal that works fine). I’ve hit quite a few small problems with the occasional app, and a few Android apps don’t run properly at all (most likely due to screen size issues rather than integration issues) but overall it works really well. In fact, almost too well – I have a few of the same apps in both ChromeOS and Android versions so sometimes I fail to notice that I am using the glitchier one until it is too late.

Despite the underlying Debian foundations, it is not super-stable and crashes in odd ways when you stretch it a little, especially when reconnecting on a different network, but it is stable enough for most standard uses that most people would run into, and it reboots really quickly. Even in the few weeks I’ve had it, it seems more stable, so this is a moving target.

Updates come thick and fast, but it is a little worrying that Google’s long term commitment to ChromeOS seems (like most of their offerings) shaky: the Web app store is due to close at some point soon and there are some doubts about whether it will continue to offer long term support for web apps in general, though Android and Linux support makes that a lot less worrying than it might be. Worst case would be to wipe most traces of ChromeOS and simply partition the machine for Linux, which would not be a bad end-of-life option at all. 

The biggest caveat, though, is that you really need to sell your soul (or at least more of your data than is healthy) to Google to use this. Without a Google account I don’t think it would work at all, but at the very least it would be crippled. I trust Google more than I trust most other big conglomerates – not because they are nice but because their business model doesn’t depend on directly selling my data to others –  but I do not love their fondness for knowing everything about me, nor that they insist on keeping my data in a banana republic run by a reality TV show host. As much as possible the apps I use are Google-free, but it is virtually impossible to avoid using the Chrome browser that runs many apps, even when you have a friendlier alternative like Vivaldi that would work just as well, if Google allowed it. In fairness, it is less privacy-abusive than Windows, and more open about it. MacOS is not great either, but Apple are fiercely aggressive in protecting your data and don’t use it for anything more than selling you more Apple goodies. Linux or BSD are really the only viable options if you really want to control your data or genuinely own your software nowadays.

Conclusions

This was a great little machine for camping. Though water and dust were a concern, especially given the low price I wasn’t too worried about treating it roughly. It was small and light, and it performed well enough on every task that I threw at it. It’s neither a great laptop nor a great tablet, but the fact that it performs both tasks sufficiently well without the ugliness and hassles of Windows or the limitations of single OS machines is very impressive.

Since returning from camping I have found myself using the machine a lot more than I thought I might. My Macbook Pro is pretty portable and its battery life is not too bad, but it is normally plugged in to a big monitor and a whole bunch of disk drives, so I can’t just pick it up to move around the house or down to the boat without a lot of unplugging and, above all, disk ejection (which, thanks to Apple’s increasingly awful implementation of background indexing that has got significantly worse with every recent release of OSX, can often be an exercise in deep frustration), so I rarely do so unless I know I will be away from the desk for a while. I love that I can just pick the Flip up and use it almost instantly, and I only need to charge it once every couple of days, even when I use it a lot. I still far prefer to use my Macbook Pro for anything serious or demanding, my iPad or phone for reading news, messaging, drawing, etc, and a dedicated ebook reader for reading books, but the fact that this can perform all of those tasks reasonably well is useful enough that it is fast becoming my default mobile device for anything a cellphone doesn’t handle well, such as writing anything of any length, like this (which is all written using the Flip).

In summary, the whole thing is a bit of a weird hybrid that shows its seams a bit too often but that can do most things any tablet or PC can do, and then some. It does a much better job than Windows of combining a ‘real’ PC with a tablet-style device, mainly because (thanks to Android) it does the tablet far better than any Windows PC and, thanks to Linux, it is almost as flexible as a PC (though, bearing in mind that Windows now does Linux reasonably well, it is not quite in the same league). The low spec of the machine does create a few brick walls: I am not going to be running any VMs on it, nor running any graphics-intensive, memory-intensive, or CPU-intensive tasks but, for well over 90% of my day to day computing needs, it works just fine.

I’m now left wondering whether it might be worthwhile to invest in one of the top-of-the-line Google Chromebooks to cater for my more advanced requirements. They are beautiful devices that address nearly all the hardware limitations of the C234 very well, and that are at least a match for mid-to-high end Windows and Mac machines in performance and flexibility, and they come at a price to match: really not cheap. But I don’t think either I or ChromeOS are quite ready for that yet.  MacOS beats it hands down in terms of usability, speed, reliability, consistency, and flexibility, despite Apple’s deeply tedious efforts to lock MacOS down in recent years (trying to triple boot to MacOS, Windows, and Linux is an exercise in frustration nowadays) and despite not offering a touch screen option. If Apple goes further down the path of assuming all users are idiots then I might change my mind but, for now, its own operating system is still the best available, and a Mac  runs Windows and Linux better than almost any equivalently priced generic PC. I would very seriously consider a high-end Chromebook, though, as an alternative to a Windows PC. It is inherently more secure, far less hassle to maintain, and lets you get to doing what you want to do much faster than any Windows machine. Unless you really need a bit of hardware of software that only runs under Windows – and there are very few of those nowadays – then I can think of few reasons to prefer it.  

Where to buy (current advertised price $CAD409): https://www.bestbuy.ca/en-ca/product/asus-flip-c234-11-6-touchscreen-2-in-1-chromebook-intel-celeron-n4020-64gb-emmc-4gb-ram-chrome-os/14690262

Letting go and staying close: presentation to GMR Institute of Technology, India, August 2020

Letting go and staying close

Here are my slides from a presentation I gave to GMR Institute of Technology, Rajam of Srikakulum District, Andhra Pradesh State, India, last week. I gave the presentation from a car, parked in a camp site in the midst of British Columbia, surrounded by mountains and lakes and forest, taking advantage of a surprisingly decent 4G connection via an iPad. It was sadly not interactive, but I hope that those present learned something useful (even if, as my presentation emphasized, they did not learn what I intended to teach).

The general gist of it is that, when teaching online, we need to let go because the in-person power we have in a classroom simply isn’t there. There are other consequences – the need to build community, to demonstrate caring, to accept and value the context of the learner, to accept and value the very many teachers that they will encounter apart from us.

A novel approach to protecting academic freedom of speech: allow it, but do not allow it to be heard

The faculty and professional staff union at Athabasca University, AUFA (the Athabasca University Faculty Association), has two mailing lists, one used for announcements from its exec committee, and one for discussions between its members. Given that most of us have barely any physical contact with one another at the best of times, and that there are no other technologies that are likely to reach even a fraction of all staff involved in teaching and research (the Landing AUFA group, for instance, has only about 40 out of a few hundred potential members) the latter is the primary vehicle through which we, as a community of practice, communicate, share ideas and news, and engage in discussions that help to establish our collective identity. It’s a classic online learning community using a very low threshold, simple, universally accessible technology.

There had been a debate on the discussion list for a few days over the past week on a contentious issue pitting academic freedom against the needs and rights of transgender people. As too often happens when the rights of disadvantaged minorities are involved, the conversation was getting toxic, culminating in a couple of faculty members directly and very unprofessionally abusing another, telling him to shut up and to stop displaying his ignorance. This is not behaviour worthy of anyone, let alone teachers (of all people), and something had to be done about it. At this point the obvious solution would have been for the managers of the list to discuss these abuses individually with those members, and/or for the individuals themselves to reflect on and apologize for their behaviour, and/or to open up the debate on the list about acceptable norms and approaches to de-escalating situations like this. Sadly, that’s not how the list managers responded. Very suddenly, and without any prior warning or discussion whatsoever, the union executive committee shut the entire discussion list down indefinitely, mercilessly nuking it with the following terse and uninformative message posted to the announcement list:

” Dear AUFA members,

Until further notice, AUFA is suspending the AUFA discussions list serv for review of harmful language and due to a high volume of complaints.”

Shocked by this baldly authoritarian response, I immediately sent a strong message of protest, that I tempered with recommendations about what would have been an appropriate approach to managing the problem, and suggestions about ways to move forward with alternative methods and tools in future. I received no reply. One long day later, however, the following message was posted to the announcement list:

” Dear AUFA members,

I want to update you on the situation with the AUFA discussions list serv.

AUFA is committed to protecting Academic Freedom. AUFA is equally committed to protecting Human Rights. AUFA did not make the decision to suspend the list serv lightly. As the entity legally responsible for the listserv, AUFA has an obligation to ensure the safety of its members.

The AUFA executive had a lengthy discussion about the purpose and usefulness of the AUFA listserv and is actively considering alternative methods and forums by which members might communicate with each other in the near future. “

That’s it. That’s the whole message. Clearly they did not discuss this with the people who were actually affected, or with those who had been abusive, and they certainly didn’t talk about it with the rest of us. The message itself is remarkably uninformative, raising far more questions than it answers. It reads to me as ‘you have been naughty children and we have decided to send you to your room to think about it’. But I think they must have been following a different discussion than the one I saw because, though there was certainly some unprofessional nastiness and some unsubtle arguments expressed (that were becoming far more refined as the discussion progressed – that’s how free and open debate is supposed to work), I did not spot any human rights abuses during the discussion, and the only abuse of academic freedom I could see was the decision to shut down the list itself. Removing the possibility of speech altogether is certainly a non-traditional approach to protecting freedom of speech.

Notice, too, that in both messages there is a synecdochal conflation of ‘AUFA’ and ‘the AUFA executive committee’. I’m pretty sure that, as a member of AUFA, I would know whether I had been part of such a decision. That’s a bit like a teacher shutting down an online course because someone was rude, then claiming that the class shut it down. It’s a subtle way of abnegating responsibility, suggesting that some technological entity did something when, in fact, it was done by very real and fully responsible people. AUFA did not do this, and AUFA did not make these decisions. A small group of actual, real human beings did it, all by themselves.

I sent a strongly worded (but respectful) response to that one too.

Who owns this?

I think it is clear that the mailing list is not owned by the union executive committee. They are custodians of it, stewards who run it on the behalf of everyone in the union. Shutting it down denies the members of the union their primary means of connection and debate, including debate about this very issue. The message is quite misleading about the AUFA exec’s responsibilities, too: though they do need to be attentive to illegal behaviours, they are not legally responsible for what other people say on the listserv. In fact, the explicit or implicit legal protections afforded to providers of such services are fundamental to allowing much of the Internet to work at all. This is why there is so much outrage and protest against Trump’s efforts to remove such protections in the US right now. And there are lots of ways of handling the problem, from direct personal communication to public debate to the establishment of rules or a social contract to calling in the police. Going nuclear on the service does not fulfill that responsibility at all; it simply evades it.

It is absolutely fair to claim that list managers do have a responsibility to the union members of helping to maintain a non-abusive, safe, supportive online community. However, shutting down the thing they have an obligation to preserve is not just neglect of that responsibility but the worst and most harmful thing they could possibly do to fulfill it. It is like protecting an endangered animal by shooting it.

Ironically, the final message posted on the now-dead discussion list ended with the line:

“One thing I vowed to myself… is that I would never let anyone stop me from saying what I have to say “

Well, that kept like milk.

I feel incensed, abused, and suddenly incredibly isolated from my university and my colleagues. My sense of loss is tangible and intense. It’s lucky that I do have other channels, like this one, to vent my frustration and to bring this to a broader audience. I hope this message gets to at least a few of those who, like me, are feeling cut off and disempowered and, if they have not done so already, that they loudly voice their concerns to those responsible.

Moving on

Unfortunately, though very low threshold and accessible to all, listservs are not great tools for hosting contentious debates. They are extremely soft technologies which means that, on the positive side, they are extremely flexible and very low threshold, but that therefore a great deal of additional process must be added manually by their participants in order to deal with them: distinguishing threads, choosing which to attend to, tracking conversations, managing archived messages, using appropriate subject lines, to name but a few.

Listservs are poor tools for achieving consensus and poor tools for argument. The push nature of the technology means it can be very intrusive but, equally, the fact that we control our mail filters means that it can be completely shut down and ignored, without other participants having any knowledge that their messages are falling on deaf ears. It’s a technology that allows everyone to shout at the same time so it’s unsurprising that it is fertile ground for misunderstandings, confusion, high emotions, and people who forget that they are talking to other people. The very simplicity that makes them so easy to engage with also makes it easier to forget the humans behind the messages. Unless individuals have taken pains to share things about themselves with their messages, there are not even pictures and profiles to serve as a reminder. Though web archives may be available, they are rarely if ever open for continued dialogue: though, in principle, one could reply to a message from months or years ago, that virtually never happens. This means that people tend rush to get their message across before the list moves on to some other topic, with all the risks that entails. It kind of has to be that way. Because of the push nature of the medium, if conversations were to persist then multiple parallel discussions would rapidly overwhelm everyone’s inbox and attention.

For all these reasons and more, as anyone who has ever tried to do so will be painfully aware, managing a mailing list used for open discussion, especially one (like this) that lacks a clear mandate, contract or terms of engagement, takes a lot of manual effort, a fair bit of ingenuity, and a lot of careful attention. When things get out of hand, those who run the list need to take active, timely, creative measures to defuse them. It’s hard but necessary work, that demands sensitivity, a forgiving nature, a willingness to accept abuse with very little chance of being thanked for your efforts and, often, willingness and availability to work far ouside a normal working day (this, as it happens, is also true of many approaches to online teaching). Unfortunately, no one in our union leadership seems willing or able to take on such management. If that’s the case, the solution is not to shut it down. The solution is to pass it on to someone else who can and will moderate it more caringly, perhaps to put some more resources into managing it and, perhaps, to participatively look into rules, norms, and other tools and procedures that might do the job better.

Moving further on

There are hundreds and maybe thousands of tools and methods that can better (or at least differently) support this kind of debate than a listserv. Even the humble threaded forum at least allows such discussions to be segmented and, for those upset by them, ignored. Some allow for threads or people to be (from an individual’s perspective) muted, and many allow forum owners to close discussions in a particular thread without killing the whole thing. Some go beyond crude threads, allowing richer cross-linking between messages and discussions. Some offer authoring help, like in-line searching of previous messages and direct linking to sources or, simple AI to warn when sentiments appear to run high. Many tools allow for simple tricks like karma points, thumbs up, and other low threshold ways of signalling agreement or disagreement, in a manner that shows collective sentiment without a high commitment or fear of reprisal, and that also signals whether a topic is interesting to the crowd without relying on a deluge of messages to show it. Some offer means to reach decisions, from simple votes to computer supported collaborative argumentation tools. Many allow for profiles and other signals of social presence that make the humans behind the messages more visible and salient. Some (blogs, say, like this one) allow for more focused subscribable discussions on specific themes that are managed and owned by the creator of the original post, and that are not as ephemeral as mailing lists. Some offer other tools like persistent shared bookmarks or filesharing that help to organize resources related to themes of debate. Some have recommender systems that show related posts and thus help to situate discussions, and to support connections back to previous discussions. Many have persistence so that learning is reified and searchable, not lost in a stream of thousands of other emails. Some allow for scheduling and time-limited discussions.

Equally, there are lots of process models for reaching consensus on social norms and acceptable behaviours, as well as ways of dealing with issues when they arise. Skills can be developed in stewardship and moderation so that problems are defused before they become severe, or not arise in the first place thanks to careful specification of ground rules or structuring of the process. There are plenty of books and papers on the subject (this is my favourite, especially now that it is free) that delve into great detail. There are ways of taking an holistic approach that takes into account the larger social ecosystem to (for instance) help to build social capital, use different tools for different functions, and so on.

All of these technologies, including process models, methods, and procedures, come with plentiful gotchas – Faustian bargains and monkeys’ paws that can easily cause more problems than they solve and that will never be ideal for all – so this is not a set of decisions that should be entered into lightly or without extensive consultation, participation, and analysis, and it should always be thought of as an ongoing process, never a finished solution. Clearly, it eventually needs to be done. In the meantime, if a listserv is all we have, then we should at least manage it properly. It is not acceptable to simply nuke the only tool we have, even if it is a weak one.

I do realize that union leadership is an extremely hard and often thankless job and, though I frequently feel very critical of things they do on my behalf,  especially when they adopt an archaic ‘us vs them’ vocabulary, I am thankful they do it. I very seldom voice my adverse opinions because I know they are trying to do their best for everyone, I am certainly not willing to take on the enormous commitments involved myself and, without their hard work and principled actions (regardless of occasions when they actively make things worse) we would, on average, be in a far worse place than we are today. However, the union leadership’s response to this has been outrageously authoritarian, disproportionate, insensitive, and deeply harmful, in direct opposition to everything a union should stand for. If this is a reflection of their values then they do not have either my trust or my support.

 

Postscript

Eventually, after nearly two days, I received a one-line personal reply to my original complaint telling me that the suspension of the list is temporary (this may be news to others in the union who have not been told this: you heard it here first, folks!) and that they will, at some unspecified point, be seeking input from members on communication preferences (not consultation, note, or participation, just input). No timelines were given. I am not satisfied with this.

Does technology lead to improved learning? (tl;dr: it's a meaningless question)

Students using computers, public domain, https://www.flickr.com/photos/internetarchivebookimages/19758917473/There have been (at least) tens of thousands of comparative studies on the effects of ‘technology’ on learning performed over the past hundred years or so. Though some have been slightly more specific (the effects of computers, online learning, whiteboards, eportfolios, etc) and some more sensible authors use the term ‘tech’ to distinguish things with flashing lights from technologies in general, nowadays it is pretty common to just use the term ‘technology’ as though we all know what the authors mean. We don’t. And neither do they.

It makes no more sense to ask whether (say) computers have a positive or negative effect on learning than to ask whether (say) pedagogies have a positive or negative effect on learning. Pedagogies (methods and principles of learning and teaching) are at least as much technologies as computers and their uses and forms are similarly diverse. Some work better than others, sometimes, in some contexts, for some people. All are soft technologies that demand we act as coparticipants in their orchestration, not just users of them. This means that we have to add stuff to them in order that they work. None do anything of interest by themselves – they must be orchestrated with (usually many) other tools, methods, structures, and so on in order to do anything at all. All can be orchestrated well (assuming we know what ‘well’ really means, and we seldom really do) or badly.

It is instructive to wonder why it is that, as far as I know, no one has yet tried to investigate the effects of transistors, or screws, or words, or cables on learning, even though they are an essential part of most technologies that we do see fit to research and are certainly prerequisite parts of many educational interventions. The answer is, I hope, obvious: we would be looking at the wrong level of detail. We would be examining a part of the assembly that is probably not materially significant to learning success, albeit that, without them, we would not have other technologies that interest us more. Transistors enable computers, but they do not entail them.

Likewise computers and pedagogies enable learning, but do not entail it (for more on enablement vs entailment, see Longo et al, 2012 or, for a fuller treatment, Kauffman, 2019). True, pedagogies and computers may orchestrate many more phenomena for us, and some of those orchestrations may have more consistent and partly causal effects on whether an intervention works than screws and cables but, without considering the entire specific assembly of which they are a part, those effects are no more generalizably relevant to whether learning is effective or not than the effects of words or transistors.

Technologies enable (or sometimes disable) a range of phenomena, but only rarely do they generalizably entail a fixed set of outcomes and, if they do, there are almost always ways that we can assemble them with other technologies that alter those outcomes. In the case of something as complex as education, which always involves thousands and usually millions of technological components assembled with one another by a vast number of people, not just the teacher, every part affects every other. It is irreducibly complex, not just complicated. There are butterfly’s wing effects to consider – a single injudicious expletive, say, or a even a smile can transform the effectiveness or otherwise of teaching. There’s emergence, too. A story is not just a collection of words, a lesson is not just a bunch of pedagogical methods, a learning community is not just a collection of people. And all of these things – parts and emergent or designed combinations of parts – interact with one another to lead to deterministic but unprestatable consequences (Kauffman, 2019).

Of course, any specific technology applied in a specific context can and will entail specific and (if hard enough) potentially repeatable outcomes. Hard technologies will do the same thing every time, as long as they work. I press the switch, the light comes on. But even for such a simple, hard technology, you cannot from that generalize that every time any switch is pressed a light will come on, even if you, without warrant, assume that the technology works as intended, because it can always be assembled with other phenomena, including those provided by other technologies, that alter its effects. I press many switches every day that do not turn on lights and, sometimes, even when I press a light switch the light does not come on (those that are assembled with smart switches, for instance). Soft technologies like computers, pedagogies, words, cables, and transistors are always assembled with other phenomena. They are incomplete, and do not do anything of interest at all without an indefinitely large number of things and processes that we add to them, or to which we add them, each subtly or less subtly different from the rest. Here’s an example using the soft technology of language:

  • There are countless ways I could say this.
  • There are infinitely many ways to make this point.
  • Wow, what a lot of ways to say the same thing!
  • I could say this in a vast number of ways.
  • There are indefinitely many ways to communicate the meaning of what I wish to express.
  • I could state this in a shitload of ways.
  • And so on, ad infinitum.

This is one tiny part of one tiny technology (this post). Imagine this variability multiplied by the very many people, tools, methods, techniques, content, and structures that go into even a typical lesson, let alone a course. And that is disregarding the countless other factors and technologies that affect learning, from institutional regulations to interesting news stories or conversations on a bus.

Reductive scientific methods like randomized controlled tests and null hypothesis significance testing can tell us things that might be useful to us as designers and enactors of teaching. We can, say, find out some fairly consistent things about how people learn (as natural phenomena), and we can find out useful things about how well different specific parts compare with one another in a particular kind of assembly when they are supposed to do the same job (nails vs screws, for instance). But these are just phenomena that we can use as part of an assembly, not prescriptions for successful learning. The question of whether any given type of technology affects learning is meaningless. Of course it does, in the specific, because we are using it to help enable learning. But it only does so in an orchestrated assembly with countless others, and that orchestration is and must always be substantially different from any other. So, please, let’s all stop pretending that educational technologies (including pedagogical methods) can be researched in the same reductive ways as natural phenomena, as generalizable laws of entailment. They cannot.

References

Arthur, W. B. (2009). The Nature of Technology: what it is and how it evolves (Kindle ed.). New York, USA: Free Press. (Arthur’s definition of technology as the orchestration of phenomena for some purpose, and his insights into how technologies evolve through assembly, underpins the above)

Kauffman, S. A. (2019). A World Beyond Physics: The Emergence and Evolution of Life. Oxford University Press.

Longo, G., Montévil, M., & Kauffman, S. (2012). No entailing laws, but enablement in the evolution of the biosphere. Proceedings from 14th annual conference companion on Genetic and evolutionary computation, Philadelphia, Pennsylvania, USA. Full text available at https://dl.acm.org/doi/pdf/10.1145/2330784.2330946

 

Bananas as educational technologies

  Banana Water Slide banana statue, Virginia Beach, Virginia One of my most memorable learning experiences that has served me well for decades, and that I actually recall most days of my life, occurred during a teacher training session early in my teaching career. We had been set the task of giving a two-minute lecture on something central to our discipline. Most of us did what we could with a slide or two and a narrative to match in a predictably pedestrian way. I remember none of them, not even my own, apart from one. One teacher (his name was Philippe) who taught sports nutrition, just drew a picture of a banana. My memory is hazy on whether he also used an actual banana as a prop: I’d like to think he did. For the next two minutes, he then repeated ‘have a banana’ many times, interspersed with some useful facts about its nutritional value and the contexts in which we might do so. I forget most of those useful facts, though I do recall that it has a lot of good nutrients and is easy to digest. My main takeaway was that, if we are in a hurry in the morning, not to skip breakfast but to eat a banana, because it will keep us going well enough to function for some time, and is superior to coffee as a means of making you alert. His delivery was wonderful: he was enthusiastic, he smiled, we laughed, and he repeated the motif ‘have a banana!’ in many different and entertaining ways, with many interesting and varied emphases. I have had (at least) a banana for breakfast most days of my life since then and, almost every time I reach for one, I rememember Philippe’s presentation. How’s that for teaching effectiveness?

But what has this got to do with educational technologies? Well, just about everything.

As far as I know, up until now, no one has ever written an article about bananas as educational technologies. This is probably because, apart from instances like the one above where bananas are the topic, or a part of the topic being taught, bananas are not particularly useful educational technologies. You could, at a stretch, use one to point at something on a whiteboard, as a prop to encourage creative thinking, or as an anchor for a discussion. You could ask students to write a poem on it, or calculate its volume, or design a bag for it. There may in fact be hundreds of distinct ways to use bananas as an educational technology if you really set your mind to it. Try it – it’s fun! Notice what you are doing when you do this, though. The banana does provide some phenomena that you can make use of, so there are some affordances and constraints on what you can do, but what makes it an educational technology is what you add to it yourself. Notwithstanding its many possible uses in education, on balance, I think we can all agree that the banana is not a significant educational technology.

Parts and pieces

Here are some other things that are more obviously technological in themselves, but that are not normally seen as educational technologies either:

  • screws
  • nails
  • nuts and bolts
  • glue

Like bananas, there are probably many ways to use them in your teaching but, unless they are either the subject of the teaching or necessary components of a skill that is being learned (e.g. some crafts, engineering, arts, etc) I think we can all agree that none of these is a significant educational technology in itself. However, there is one important difference. Unlike bananas, these technologies can and do play very significant roles in almost all education, whether online or in-person. Without them and their ilk, all of our educational systems would, quite literally, fall apart. However, to call them educational technologies would make little sense because we are putting the boundaries around the wrong parts of the assembly. It is not the nuts and bolts but what we do with them, and all the other things with which they are assembled, that matters most. This is exactly like the case of the banana.

Bigger pieces

This is interesting because there are other things that some people do consider to be sufficiently important educational technologies that they get large amounts of funding to perform large-scale educational research on them, about which exactly the same things could be said: computers, say. There is really a lot of research about computers in classrooms. And yet metastudies tend to conclude that, on average, computers have little effect on learning. This is not surprising. It is for exactly the same reason that nuts and glue, on average, have little effect on learning. The researchers are choosing the wrong boundaries for their investigations.

The purpose of a computer is to compute. Very few people find this of much value as an end in itself, and I think it would be less useful than a banana to most teachers. In fact, with the exception of some heavily math-oriented and/or computer science subjects, it is of virtually no interest to anyone.

The ends to which the computing they perform are put are another matter altogether. But those are no more the effect of the computer than the computer is the effect of the nuts and bolts that hold it together. Sure, these (or something like them) are necessary components, but they are not causes of whatever it is we do with them. What makes computers useful as educational technologies is, exactly like the case of the banana, what we add to them.

It is not the computer itself, but other things with which it is assembled such as interface hardware, software and (above all) other surrounding processes – notably the pedagogical methods – that can (but on average won’t) turn it into an educational technology. There are potentially infinite numbers of these, or there would be if we had infinite time and energy to enact them. Computers have the edge on bananas and, for that matter, nuts and bolts because they can and usually must embody processes, structures, and behaviours. They allow us to create and use far more diverse and far more complex phenomena than nuts, bolts, and bananas. Some – in fact, many – of those processes and structures may be pedagogically interesting in themselves. That’s what makes them interesting, but it does not make them educational technologies. What can make them educational technologies are the things we add, not the machines in themselves.

This is generalizable to all technologies used for educational purposes. There are hierarchies of importance, of course. Desks, classrooms, chairs, whiteboards and (yes) computers are more interesting than screws, nails, nuts, bolts, and glue because they orchestrate more phenomena to more specific uses: they create different constraints and affordances, some of which can significantly affect the ways that learning happens. A lecture theatre, say, tends to encourage the use of lectures. It is orchestrating quite a few phenomena that have a distinct pedagogical purpose, making it a quite significant participant in the learning and teaching process. But it and all these things, in turn, are utterly useless as educational technologies until they are assembled with a great many other technologies, such as (very non exhaustively and rather arbitrarily):

  • pedagogical methods,
  • language,
  • drawing,
  • timetables,
  • curricula,
  • terms,
  • classes,
  • courses,
  • classroom rules,
  • pencils and paper,
  • software,
  • textbooks,
  • whiteboard markers,
  • and so on.

None of these parts have much educational value on their own. Even something as unequivocally identifiable as an educational technology as a pedagogical method is useless without all the rest, and changes to any of the parts may have substantial impacts on the whole. Furthermore, without the participation of learners who are applying their own pedagogical methods, it would be utterly useless, even in assembly with everything else. Every educational event – even those we apparently perform alone – involves the coparticipation of countless others, whether directly or not.

The point of all this is that, if you are an educational researcher or a teacher investigating your own teaching, it makes no sense at all to consider any generic technology in isolation from all the rest of the assembly. You can and usually should consider specific instances of most if not all those technologies when designing and performing an educational intervention, but they are interesting only insofar as they contribute, in relationship to one another, to the whole.

And this is not the end of it. Just as you must assemble many pieces in order to create an educational technology, what you have assembled must in turn be assembled by learners – along with plenty of other things like what they know already, other inputs from the environment, from one another, the effects of things they do, their own pedagogical methods, and so on – in order to achieve the goals they seek. Your own teaching is as much a component of that assembly as any other. You, the learners, the makers of tools, inventors of methods, and a cast of thousands are coparticipants in a gestalt process of education.

This is one of the main reasons that reductive approaches to educational research that attempt to isolate the effects of a single technology – be it a method of teaching, a device, a piece of software, an assessment technique, or whatever – with the intent of generalizing some statement about it cannot ever work. The only times they have any value at all are when all the technologies in question are so hard, inflexible, and replicable, and the uses to which they are put are so completely fixed, well defined, and measurable that you are, in effect, considering a single specific technology in a single specific context. But, if you can specify the processes and purposes with that level of exactitude then you are simply checking that a particular machine works as it is designed to work. That’s interesting if you want to use that precise machine in an almost identical context, or you want to develop the machine itself further. But it is not generalizable, and you should never claim that it is. It is just part of a particular story. If you want to tell a story then other methods, from narrative descriptions to rich case studies to grounded theory, are usually much more useful.

Obsolescence and decay

Koristka camera  All technologies require an input of energy – to be actively maintained – or they will eventually drift towards entropy. Pyramids turn to sand, unused words die, poems must be reproduced to survive, bicycles rust. Even apparently fixed digital technologies rely on physical substrates and an input of power to be instantiated at all. A more interesting reason for their decay, though, is that virtually no technologies exist in isolation, and virtually all participate in, and/or are participated in by other technologies, whether human-instantiated or mechanical. All are assemblies and all exist in an ecosystem that affects them, and which they affect. If parts of that system change, then the technologies on which they depend may cease to function even though nothing about those technologies has, in itself, altered.

Would a (film) camera for which film is no longer available still be a camera? It seems odd to think of it as anything else. However, it is also a bit odd to think of it as a camera, given that it must be inherent to the definition of a camera that it can take photos. It is not (quite) simply that, in the absence of film, it doesn’t work. A camera that doesn’t take photos because the shutter has jammed or the lens is missing is still a camera: it’s just a broken camera, or an incomplete camera. That’s not so obviously the case here. You could rightly claim that the object was designed to be a camera, thereby making the definition depend on the intent of its manufacturer. The fact that it used to be perfectly functional as a camera reinforces that opinion. Despite the fact that it cannot take pictures, nothing about it – as a self-contained object – has changed. We could therefore simply say it is therefore still a camera, just one that is obsolete, and that obsolescence is just another way that cameras can fail to work. This particular case of obsolescence is so similar to that of the missing lens that it might, however, make more sense to think of it as an instance of exactly the same thing. Indeed someone might one day make a film for it and, being pedantic, it is almost certainly possible to cut up a larger format film and insert it, at which point no one would disagree that it is a camera, so this is a reasonable way to think about it. We can reasonably claim that it is still a camera, but that it is currently incomplete.

Notice what we are doing here, though. In effect, we are supposing that a full description of a camera – ie. a device to take photos – must include its film, or at least some other means of capturing an image, such as a CCD. But, if you agree to that, where do you stop? What if the only film that the camera can take demands processing that is not? What if is is a digital camera that creates images that no software can render? That’s not impossible. Imagine (and someone almost certainly will) a DRM’d format that relies on a subscription model for the software used to display it, and that the company that provides that subscription goes out of business. In some countries, breaking DRM is illegal, so there would be no legal way to view your own pictures if that were the case. It would, effectively, be the same case as that of a camera designed to have no shutter release, which (I would strongly argue) would not be a camera at all because (by design) it cannot take pictures. The bigger point that I am trying to make, though, is that the boundaries that we normally choose when identifying an object as a camera are, in fact, quite fuzzy. It does not feel natural to think of a camera as necessarily including its film, let alone also including the means of processing that film, but it fails to meet a common-sense definition of the term without those features.

A great many – perhaps most – of our technologies have fuzzy boundaries of this nature, and it is possible to come up with countless examples like this. A train made for a track gauge that no longer exists, clothing made in a size that fits no living person, printers for which cartridges are no longer available, cars that fail to meet emissions standards, electrical devices that take batteries that are no longer made, and so on. In each case, the thing we tend to identify as a specific technology no longer does what it should, despite nothing having changed about it, and so it is difficult to maintain that it is the same technology as it was when it was created unless we include in our definition the rest of the assembly that makes it work. One particularly significant field in which this matters a great deal is in computing. The problem occurs in every aspect of computing: disk formats for which no disk drives exist, programs written for operating systems that are no longer available, games made for consoles that cannot be found, and so on. In a modern networked environment, there are so many dependencies all the way down the line that virtually no technology can ever be considered in isolation. The same phenomenon can happen at a specific level too. I am currently struggling to transfer my websites to a different technology because the company providing my server is retiring it. There’s nothing about my sites that has changed, though I am having to make a surprising number of changes just to keep them operational on the new system. Is a website that is not on the web still a website?

Whatever we think about whether it remains the same technology, if it does not do what the most essential definition of that technology claims that it must, then a digital technology that does not adapt eventually dies, even though its physical (digital) form might persist unchanged. This is because its boundaries are not simply its lines of code. This both stems from and leads to fact that technologies tend to evolve to ever greater complexity. It is especially obvious in the case of networked digital technologies, because parts of the multiple overlapping systems in which they must participate are in an ever-shifting flux. Operating systems, standards, protocols, hardware, malware, drivers, network infrastructure, etc can and do stop otherwise-unchanged technologies from working as intended, pretty consistently, all the time. Each technology affects others, and is affected by them. A digital technology that does not adapt eventually dies, even though (just like the camera) its physical (digital) form persists unchanged. It exists only in relation to a world that becomes increasingly complex thanks to the nature of the beast.

All species of technology evolve to become more complex, for many reasons, such as:

  • the adjacent possibles that they open up, inviting elaboration,
  • the fact that we figure out better ways to make them work,
  • the fact that their context of use changes and they must adapt to it,
  • the fact other technologies with which they are assembled adapt and change,
  • the fact that there is an ever-expanding range of counter-technologies needed to address their inevitable ill effects (what Postman described as the Faustian Bargain of technology),  which in turn create a need for further counter-technologies to curb the ill effects of the counter technologies,
  • the layers of changes and fixes we must apply to forestall their drift into entropy.

The same is true of most individual technologies of any complexity, ie. those that consist of many interacting parts and that interact with the world around them. They adapt because they must – internal and external pressures see to that – and, almost always, this involves adding rather than taking away parts of the assembly. This is true of ecosystems and even individual organisms, and the underlying evolutionary dynamic is essentially the same. Interestingly, it is the fundamental dynamic of learning, in the sense of an entity adapting to an environment, which in turn changes that environment, requiring other entities within that environment to adapt in turn, which then demands further adaptation to the ever shifting state of the system around it. This occurs at every scale, and every boundary. Evolution is a ratchet: at any one point different paths might have been taken but, once they have been taken, they provide the foundations for what comes next. This is how massive complexity emerges from simple, random-ish beginnings. Everything builds on everything else, becoming intricately interwoven with the whole. We can view the parts in isolation, but we cannot understand them properly unless we view them in relation to the things that they are connected with.

Amongst other interesting consequences of this dynamic, the more evolved technologies become, the more they tend to be comprised of counter-technologies. Some large and well-evolved technologies – transport systems, education systems, legal systems, universities, computer systems, etc – may consist of hardly anything but counter-technologies, that are so deeply embedded we hardly notice them any more. The parts that actually do the jobs we expect of them are a small fraction of the whole. The complex interlinking between counter-technologies starts to provide foundations on which further technologies build, and often feed back into the evolutionary path, changing the things that they were originally designed to counter, leading to further counter-technologies to cater for those changes. 

To give a massively over-simplified but illustrative example:

Technology: books.

Problem caused: cost.

Counter-technology: lectures.

Problem caused: need to get people in one place at one time.

Counter-technology: timetables.

Problem caused: motivation to attend.

Counter-technology: rewards and punishments.

Problem caused: extrinsic motivation kills intrinsic motivation.

Counter-technology: pedagogies that seek to re-enthuse learners.

Problem caused: education comes to be seen as essential to future employment but how do you know that it has been accomplished?

Counter-technology: exams provide the means to evaluate educational effectiveness.

Problem caused: extrinsic motivation kills intrinsic motivation.

Solution: cheating provides a quicker way to pass exams.

And so on.

I could throw in countless other technologies and counter-technologies that evolved as a result to muddy the picture, including libraries, loan systems, fines, courses, curricula, semesters, printing presses, lecture theatres, desks, blackboards, examinations, credentials, plagiarism tools, anti-plagiarism tools, faculties, universities, teaching colleges, textbooks, teaching unions, online learning, administrative systems, sabbaticals, and much much more. The end result is the hugely complex, ever shifting, ever evolving mess that is our educational systems, and all their dependent technologies and all the technologies on which they depend that we see today. This is a massively complex system of interdependent parts, all of which demand the input of energy and deliberate maintenance to survive. Changing one part shifts others, that in turn shift others, all the way down the line and back again. Some are harder and less flexible than others – and so have more effect on the overall assembly – but all contribute to change.

We have a natural tendency to focus on the immediate, the local, and the things we can affect most easily. Indeed, no one in the entire world can hope to glimpse more than a caricature of the bigger picture and, being a complex system, we cannot hope to predict much beyond the direct effects of what we do, in the context that we do them. This is true at every scale, from teaching a lesson in a classroom to setting educational policies for a nation. The effects of any given educational intervention are inherently unknowable in advance, whatever we can say about average effects. Sorry, educational researchers who think they have a solution – that’s just how it is. Anyone that claims otherwise is a charlatan or a fool. It doesn’t mean that we cannot predict the immediate future (good teachers can be fairly consistently effective), but it does mean that we cannot generalize what they do to achieve it.

One thing that might help us to get out of this mess would be, for every change we make, to think more carefully about what it is a counter-technology for,  and at least to glance at what the counter-technologies we are countering are themselves counter-technologies for. It might just be that some of the problems they solve afford greater opportunities to change than their consequences that we are trying to cope with. We cannot hope to know everything that leads to success – teaching is inherently distributed and inherently determined by its context – but we can examine our practice to find out at least some of the things that lead us to do what we do. It might make more sense to change those things than to adapt what we do to their effects.