Announcing the First International Symposium on Educating for Collective Intelligence (and some thoughts on collective intelligence)

First International Symposium on Educating for Collective Intelligence | UTS:CIC

Free-to-register International online symposium, December 5th, 2024, 12-3pm PST

Start time:

This is going to be an important symposium, I think.

I will be taking 3 very precious hours out of my wedding anniversary to attend, in fairness unintentionally: I did not do the timezone conversion when I submitted my paper so I thought it was the next day. However,  I have not cancelled despite the potentially dire consequences, partly because the line-up of speakers is wonderful, partly because we all use the words “collective intelligence” (CI) but we come from diverse disciplinary areas and we mean sometimes very different things by them (so there will be some potentially inspiring conversations) and partly for a bigger reason that I will get to at the end of this post.  You can read abstracts and most of the position papers on the symposium website,

In my own position paper  I have invented the term ochlotecture (from the Classical Greek ὄχλος (ochlos), meaning something like “multitude” and τέκτων (tektōn) meaning “builder”) to describe the structures and processes of a collection of people, whether it be a small seminar group, a network of researchers, or a set of adherents to a world religion. An ochlotecture includes elements like names, physical/virtual spaces, structural hierarchies, rules, norms, mythologies, vocabularies, and purposes, as well as emergent phenomena occurring through individual and subgroup interactions, most notably the recursive cycle of information capture, processing, and (re)presentation that I think characterizes any CI. Through this lens, I can see both what is common and what distinguishes the different kinds of CI described in these position papers a bit more clearly. In fact, my own use of the term has changed a few times over the years so it helps me make sense of my own thoughts on the matter too.

Where I’ve come from that leads me here

symbolic representation of collective intelligenceI have been researching CI and education for a long time. Initially, I used the term very literally to describe something very distinct from individual intelligence, and largely independent of it.  My PhD, started in 1997, was inspired by the observation that (even then) there were at least tens of thousands of very good resources (people, discussions, tutorials, references, videos, courseware etc) openly available on the Web to support learners in most subject areas, that could meet almost any conceivable learning need. The problem was and remains how to find the right ones. These were pre-Google times but even the good-Google of olden days (a classic application of collective intelligence as I was using the term) only showed the most implicitly popular, not those that would best meet a particular learner’s needs. As a novice teacher, I also observed that, in a typical classroom, the students’ combined knowledge and ability to seek more of it far exceeded my own.  I therefore hit upon the idea of using a nature-inspired evolutionary approach to collectively discover and recommend resources, that led me very quickly into the realm of evolutionary theory and thence to the dynamics of self-organizing systems, complex adaptive systems, stigmergy, flocking, city planning, markets, and collective intelligence.

And so I became an ochlotect. I built a series of self-organizing social software systems that used stuff like social navigation (stigmergy), evolutionary, and flocking algorithms to create environments that both shaped and were shaped by the crowd. Acknowledging that “intelligence” is a problematic word, I simply called these collectives, a name inspired by Star Trek TNG’s Borg (the pre-Borg-Queen Borg, before the writers got bored or lazy). The intelligence of a “pure” collective as I conceived it back then was largely to be found in the algorithm, not the individual agents. Human stock markets are no smarter than termite mounds by this way of thinking (and they are not). I was trying to amplify the intelligence of crowds while avoiding the stupidity of mobs by creating interfaces and algorithms that made value to learners a survival characteristic. I was building systems that played some of the roles of a teacher but that were powered by collectives consisting of learners.  Some years later, Mark Zuckerberg hit on the idea of doing the exact opposite, with considerably greater success, making a virtue out of systems that amplified collective stupidity, but the general principles behind both EdgeRank and my algorithms were similar.

When I say that I “built” systems, though, I mean that I built the software part. I came to increasingly realize that the largest part of all of them was always the human part: what the individuals did, and the surrounding context in which they did it, including the norms, the processes, the rules, the structures, the hierarchies, and everything else that formed the ochlotecture, was intrinsic to their success or failure.  Some of those human-enacted parts were as algorithmic as the software environments I provided and were no smarter than those used by termites (e.g. “click on the results from the top of the list or in bigger fonts”), but many others were designed, and played critical roles.  This slightly more complex concept of CI played a major supporting role in my first book providing a grounded basis for the design of social software systems that could support maximal learner control. In it I wound up offering a set of 10 design principles that addressed human, organizational, pedagogical and tech factors as well as emergent collective characteristics that were prerequisites if social software systems were to evolve to become educationally useful.

Collectives also formed a cornerstone of my work with Terry Anderson over the next decade or so, and our use of the term evolved further. In our first few papers, starting  in 2007, we conflated the dynamic process with the individual agents who made it happen: for us back then, a collective was the people and processes (a sort of cross between my original definition and a social configuration the Soviets were once fond of) and so we treated a collective as somewhat akin to a group or a network. Before too long we realized that was dumb and separated these elements out, categorizing three primary social forms (the set, the net, and the group) that could blend, and from which collectives could emerge and interact, as a different kind of ochlotectural entity altogether. This led us to a formal abstract definition of collectives that continues to get the odd citation to this day. We wrote a book about social media and learning in which this abstract definition of collectives figured largely, and designed The Landing to take advantage of it (not well – it was a learning experience). It appears in my position paper, too.

Collectives have come back with a vengeance but wearing different clothes in my work of the last decade, including my most recent book. I am a little less inclined to use the word “collective” now because I have come to understand all intelligence as collective, almost all of it mediated and often enacted through technologies. Technologies are the assemblies we construct from stuff to do stuff, and the stuff that they do then forms some of the stuff from which we construct more stuff to do stuff. A single PC alone, for instance, might contain hundreds of billions of instances of technologies in its assembly. A shelf of books might contain almost as many, not just in words and letters but in the concepts, theories, and models they make. As for the processes of making them, editing them, manufacturing the paper and the ink, printing them, distributing them, reading them, and so on… it’s a massive, constantly evolving, ever-adapting, partly biological system, not far off from natural ecosystems in its complexity, and equally diverse. Every use of a technology is also a technology, from words in your head to flying a space ship, and it becomes part of the stuff that can be organized by yourself or others. Through technique (technologies enacted intracranially), technologies are parts of us and we are parts of them, and that is what makes us smart.  Collective behaviour in humans can occur without technologies but what makes it collective intelligence is a technological connectome that grows, adapts, evolves, replicates, and connects every one of us to every other one of us: most of what we think is the direct result of assembling what we and others, stretching back in time and outward in space, have created. The technological connectome continuously evolves as we connect and orchestrate the vast web of technologies in which we participate, creating assemblies that have never occurred the same way twice, maybe thousands of times every day: have you ever even brushed your teeth or eaten a mouthful of cereal exactly the same way twice, in your whole life? Every single one of us is doing this, and quite a few of those technologies magnify the effects, from words to drawing to numbers to  writing to wheels to screws to ships to postal services to pedagogical methods to printing to newspapers to libraries to broadcast networks to the Internet to the World Wide Web to generative AI. It is not just how we are able to be individually smart: it is an indivisible part of that smartness. Or stupidity. Whatever. The jury is out. Global warming, widening inequality, war, epidemics of obesity, lies, religious bigotry, famine and many other dire phenomena are a direct result of this collective “intelligence”, as much as Vancouver, the Mona Lisa, and space telescopes. Let’s just stick with “collective”.

The obligatory LLM connection and the big reason I’m attending the symposium

My position paper for this symposium wanders a bit circuitously towards a discussion of the collective nature of large language models (LLMs) and their consequent global impact on our education systems. LLMs are collectives in their own right, with algorithms that are not only orders of magnitude more complex than any of their predecessors, but that are unique to every instantiation of them, operating from and on vast datasets, presenting results to users who also feed those datasets. This is what makes them capable of very convincingly simulating both the hard (inflexible, correct) and the soft (flexible, creative) technique of humans, which is both their super-power and the cause of the biggest threat they pose. The danger is that a) they replace the need to learn the soft technique ourselves (not necessarily a disaster if we use them creatively in further assemblies) and, more worryingly, b) that we learn ways of being human from collectives that, though made of human stuff, are not human. They will in turn become parts of all the rest of the collectives in which we participate. This can and will change us. It is happening now, frighteningly fast, even faster and at a greater scale than similar changes that the Zuckerbergian style of social media have also brought about.

As educators, we should pay attention to this. Unfortunately, with their emphasis on explicit measurable outcomes,  combined with the extrinsic lure of credentials, the ochlotecture of our chronically underfunded educational systems is not geared towards compensating for these tendencies. In fact, exactly the reverse. LLMs can already both teach and meet those explicit outcomes far more effectively than most humans, at a very compelling price so, more and more, they will. Both students and teachers are replaceable components in such a system. The saving grace and/or problem is that, though they matter, and they are how we measure educational success, those explicit outcomes are not in fact the most important ends of education, albeit that they are means to those ends.

The things that matter more are the human ways of thinking, of learning, and of seeing, that we learn while achieving such outcomes; the attitudes, values, connections, and relationships; our identities and the ways we learn to exist in our societies and cultures. It’s not just about doing and knowing: it’s about being, it’s about love, fear, wonder, and hunger. We don’t have to (and can’t) measure those because they all come for free when humans and the stuff they create are the means through which explicit outcomes are achieved. It’s an unavoidable tacit curriculum that underpins every kind of intentional and most unintentional learning we undertake, for better or (too often) for worse. It’s the (largely) non-technological consequence of the technologies in which we participate, and how we participate in them. Technologies don’t make us less human, on the whole: they are exactly what make us human.

We will learn such things from generative AIs, too, thanks to the soft technique they mimic so well, but what we will learn to be as a result will not be quite human. Worse, the outputs of the machines will begin to dominate their own inputs, and the rest will come from humans who have been changed by their interactions with them, like photocopies of photocopies, constantly and recursively degrading. In my position paper I argue for the need to therefore cherish the human parts of these new collectives in our education systems far more than we have before, and I suggest some ways of doing that. It matters not just to avoid model collapse in LLMs, but to prevent model collapse in the collective intelligence of the whole human race. I think that is quite important, and that’s the real reason I will spend some of my wedding anniversary talking with some very intelligent and influential people about it.

 

 

Video and slides from my webinar, How to Be an Educational Technology: An Entangled Perspective on Teaching

an entangled teacher, represented as an anthropomorphic dog wrapped in cables that hold multiple technologies around him such as books and computersFor those with an interest, here are the slides from my webinar for Contact North | Contact Nord that I gave today: How to be an educational technology (warning: large download, about 32MB).

Here is a link to the video of the session.

I was invited to do this webinar because my book (How Education Works: Teaching, Technology, and Technique, briefly reviewed on the Contact North | Contact Nord site last year) was among the top 5 most viewed books of the year, so that was what the talk was about. Among the most central messages of the book and the ones that I was trying to get across in this presentation were:

  1. that how we do teaching matters more than what we do (“T’ain’t what you do, it’s the way that you do it”) and
  2. that we can only understand the process if we examine the whole complex assembly of teaching (very much including the technique of all who contribute to it, including learners, textbooks, and room designers) not just the individual parts.

Along the way I had a few other things to say about why that must be the case, the nature of teaching, the nature of collective cognition, and some of the profound consequences of seeing the world this way. I had fun persuading ChatGPT to illustrate the slides in a style that was not that of Richard Scarry (ChatGPT would not do that, for copyright reasons) but that was reminiscent of it, so there are lots of cute animals doing stuff with technologies on the slides.

I rushed and rambled, I sang, I fumbled and stumbled, but I think it sparked some interest and critical thinking. Even if it didn’t, some learning happened, and that is always a good thing. The conversations in the chat went too fast for me to follow but I think there were some good ones. If nothing else, though I was very nervous, I had fun, and it was lovely to notice a fair number of friends, colleagues, and even the odd relative among the audience. Thank you all who were there, and thank you anyone who catches the recording later.

Preprint – The human nature of generative AIs and the technological nature of humanity: implications for education

Here is a preprint of a paper I just submitted to MDPI’s Digital journal that applies the co-participation model that underpins How Education Works (and a number of my papers over the last few years) to generative AIs (GAIs). I don’t know whether it will be accepted and, even if it is, it is very likely that some changes will be required. This is a warts-and-all raw first submission. It’s fairly long (around 10,000 words).

The central observation around which the paper revolves is that, for the first time in the history of technology, recent generations of GAIs automate (or at least appear to automate) the soft technique that has, till now, been the sole domain of humans. Up until now, every technology we have ever created, be it physically instantiated, cognitive, organizational, structural, or conceptual, has left all of the soft part of the orchestration to human beings.

The fact that GAIs replicate the soft stuff is a matter for some concern when they start to play a role in education, mainly because:

  • the skills they replace may atrophy or never be learned in the first place. This is not even slightly like replacing hard skills of handwriting or arithmetic: we are talking about skills like creativity, problem-solving, critical inquiry, design, and so on. We’re talking about the stuff that GAIs are trained with.
  • the AIs themselves are an amalgam, an embodiment of our collective intelligence, not actual people. You can spin up any kind of persona you like and discard it just as easily. Much of the crucially important hidden/tacit curriculum of education is concerned with relationships, identity, ways of thinking, ways of being, ways of working and playing with others. It’s about learning to be human in a human society. It is therefore quite problematic to delegate how we learn to be human to a machine with (literally and figuratively) no skin in the game, trained on a bunch of signals signifying nothing but more signals.

On the other hand, to not use them in educational systems would be as stupid as to not use writing. These technologies are now parts of our extended cognition, intertwingled with our collective intelligence as much as any other technology, so of course they must be integrated in our educational systems. The big questions are not about whether we should embrace them but how, and what soft skills they might replace that we wish to preserve or develop. I hope that we will value real humans and their inventions more, rather than less, though I fear that, as long as we retain the main structural features of our education systems without significant adjustments to how they work, we will no longer care, and we may lose some of our capacity for caring.

I suggest a few ways we might avert some of the greatest risks by, for instance, treating them as partners/contractors/team members rather than tools, by avoiding methods of “personalization” that simply reinforce existing power imbalances and pedagogies designed for better indoctrination, by using them to help connect us and support human relationships, by doing what we can to reduce extrinsic drivers, by decoupling learning and credentials, and by doubling down on the social aspects of learning. There is also an undeniable explosion in adjacent possibles, leading to new skills to learn, new ways to be creative, and new possibilities for opening up education to more people. The potential paths we might take from now on are unprestatable and multifarious but, once we start down them, resulting path dependencies may lead us into great calamity at least as easily as they may expand our potential. We need to make wise decisions now, while we still have the wisdom to make them.

MDPI invited me to submit this article free of their normal article processing charge (APC). The fact that I accepted is therefore very much not an endorsement of APCs, though I respect MDPI’s willingness to accommodate those who find payment difficult, the good editorial services they provide, and the fact that all they publish is open. I was not previously familiar with the Digital journal itself. It has been publishing 4 articles a year since 2021, mostly offering a mix of reports on application designs and literature reviews. The quality seems good.

Abstract

This paper applies a theoretical model to analyze the ways that widespread use of generative AIs (GAIs) in education and, more broadly, in contributing to and reflecting the collective intelligence of our species, can and will change us. The model extends Brian Arthur’s insights into the nature of technologies as the orchestration of phenomena to our use by explaining the nature of humans participation in their enactment, whether as part of the orchestration (hard technique, where our roles must be performed correctly) or as orchestrators of phenomena (soft technique performed creatively or idiosyncratically). Education may be seen as a technological process for developing the soft and hard techniques of humans to participate in the technologies and thus the collective intelligence of our cultures. Unlike all earlier technologies, by embodying that collective intelligence themselves, GAIs can closely emulate and implement not only the hard technique but also the soft that, until now, was humanity’s sole domain: the very things that technologies enabled us to do can now be done by the technologies themselves. The consequences for what, how, and even whether we learn are profound. The paper explores some of these consequences and concludes with theoretically informed approaches that may help us to avert some dangers while benefiting from the strengths of generative AIs.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/20512771/preprint-the-human-nature-of-generative-ais-and-the-technological-nature-of-humanity-implications-for-education