Preprint – The human nature of generative AIs and the technological nature of humanity: implications for education

Here is a preprint of a paper I just submitted to MDPI’s Digital journal that applies the co-participation model that underpins How Education Works (and a number of my papers over the last few years) to generative AIs (GAIs). I don’t know whether it will be accepted and, even if it is, it is very likely that some changes will be required. This is a warts-and-all raw first submission. It’s fairly long (around 10,000 words).

The central observation around which the paper revolves is that, for the first time in the history of technology, recent generations of GAIs automate (or at least appear to automate) the soft technique that has, till now, been the sole domain of humans. Up until now, every technology we have ever created, be it physically instantiated, cognitive, organizational, structural, or conceptual, has left all of the soft part of the orchestration to human beings.

The fact that GAIs replicate the soft stuff is a matter for some concern when they start to play a role in education, mainly because:

  • the skills they replace may atrophy or never be learned in the first place. This is not even slightly like replacing hard skills of handwriting or arithmetic: we are talking about skills like creativity, problem-solving, critical inquiry, design, and so on. We’re talking about the stuff that GAIs are trained with.
  • the AIs themselves are an amalgam, an embodiment of our collective intelligence, not actual people. You can spin up any kind of persona you like and discard it just as easily. Much of the crucially important hidden/tacit curriculum of education is concerned with relationships, identity, ways of thinking, ways of being, ways of working and playing with others. It’s about learning to be human in a human society. It is therefore quite problematic to delegate how we learn to be human to a machine with (literally and figuratively) no skin in the game, trained on a bunch of signals signifying nothing but more signals.

On the other hand, to not use them in educational systems would be as stupid as to not use writing. These technologies are now parts of our extended cognition, intertwingled with our collective intelligence as much as any other technology, so of course they must be integrated in our educational systems. The big questions are not about whether we should embrace them but how, and what soft skills they might replace that we wish to preserve or develop. I hope that we will value real humans and their inventions more, rather than less, though I fear that, as long as we retain the main structural features of our education systems without significant adjustments to how they work, we will no longer care, and we may lose some of our capacity for caring.

I suggest a few ways we might avert some of the greatest risks by, for instance, treating them as partners/contractors/team members rather than tools, by avoiding methods of “personalization” that simply reinforce existing power imbalances and pedagogies designed for better indoctrination, by using them to help connect us and support human relationships, by doing what we can to reduce extrinsic drivers, by decoupling learning and credentials, and by doubling down on the social aspects of learning. There is also an undeniable explosion in adjacent possibles, leading to new skills to learn, new ways to be creative, and new possibilities for opening up education to more people. The potential paths we might take from now on are unprestatable and multifarious but, once we start down them, resulting path dependencies may lead us into great calamity at least as easily as they may expand our potential. We need to make wise decisions now, while we still have the wisdom to make them.

MDPI invited me to submit this article free of their normal article processing charge (APC). The fact that I accepted is therefore very much not an endorsement of APCs, though I respect MDPI’s willingness to accommodate those who find payment difficult, the good editorial services they provide, and the fact that all they publish is open. I was not previously familiar with the Digital journal itself. It has been publishing 4 articles a year since 2021, mostly offering a mix of reports on application designs and literature reviews. The quality seems good.

Abstract

This paper applies a theoretical model to analyze the ways that widespread use of generative AIs (GAIs) in education and, more broadly, in contributing to and reflecting the collective intelligence of our species, can and will change us. The model extends Brian Arthur’s insights into the nature of technologies as the orchestration of phenomena to our use by explaining the nature of humans participation in their enactment, whether as part of the orchestration (hard technique, where our roles must be performed correctly) or as orchestrators of phenomena (soft technique performed creatively or idiosyncratically). Education may be seen as a technological process for developing the soft and hard techniques of humans to participate in the technologies and thus the collective intelligence of our cultures. Unlike all earlier technologies, by embodying that collective intelligence themselves, GAIs can closely emulate and implement not only the hard technique but also the soft that, until now, was humanity’s sole domain: the very things that technologies enabled us to do can now be done by the technologies themselves. The consequences for what, how, and even whether we learn are profound. The paper explores some of these consequences and concludes with theoretically informed approaches that may help us to avert some dangers while benefiting from the strengths of generative AIs.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/20512771/preprint-the-human-nature-of-generative-ais-and-the-technological-nature-of-humanity-implications-for-education

Informal Learning in Digital Contexts | Handbook of Open, Distance, and Digital Education

This is the second of two chapters by Terry Anderson and me (the other being on the topic of pedagogical paradigms, that I shared a week or two ago) from Springer’s Handbook of Open, Distance, and Digital Education.

The ‘paradigms’ chapter more or less wrote itself – we’ve churned those ideas around for long enough now that we both know the topic rather well – but this one caused us a lot more trouble. Our difficulties were largely due to the fact that we started out with roughly as much idea about what the term ‘informal learning’ means as anyone else. In other words, we kind of recognized it when we saw it, but could come up with no plausible definition that was not either simply wrong, incomplete, or vaguely defined as ‘not formal’ (sometimes adding the utterly circular cop-out notion of ‘non-formal’). As we later figured, ‘formal’ is no better defined than ‘informal’, so that didn’t help. Faced with the need to cover a fairly representative sample of work in the area, we therefore made a mess of it. Our initial draft consisted mainly of a set of examples culled mainly from Terry’s encyclopaedic knowledge of the literature in the field, bound together in loosely connected themes. Because the literature we were citing was based on a large, vague, and often mutually contradictory variety of understandings of ‘informal learning’ the chapter reflected this too: the parts were fine, but the whole was quite incoherent. We needed a better framework.

So we started to brainstorm a few different ways of thinking about the problem, looking at as many ways the term was used as we could find, identifying common patterns and frequently associated concepts, trying to distinguish necessary from sufficient conditions, and consequently finding a much bigger mess than the one we had started with. The amount of fuzzy thinking and loose, almost arbitrary terminology found in the field of informal learning turns out to be quite staggering. It’s not a field: it’s a jungle.

Not for the first time, though, I found Michael Erault’s work in the area to be an inspiration and source of clarity. Erault doesn’t try to come up with a single defining characteristic, instead recognizing that there is a richly variegated continuum of informal-to-formal ways that people learn from and with one another (at least in the workplace settings he has studied). Although (as far as I know) he didn’t  explicitly use the term, the sets of characteristics that Erault uses to identify relative degrees of informality seemed to me to imply that he was thinking in terms of what Wittgenstein described as Familienähnlichkeit (family resemblances). No single cluster of characteristics define learning as informal (or formal, for that matter) but, if enough are present, we can usually recognize it as one or the other, or somewhere in between.

This gave us a useful starting point, but it still left a lot of vagueness, and  Erault’s focus on informal workplace learning did not fully address all of the meanings and instantiations of informal learning that are particularly significant when examining digital contexts – all the stuff that happens in exchanges through social media, for instance, from Quora to YouTube tutorials and back through email, Reddit, and Twitter. Also, it seemed to gloss over the formal stuff which (as we noted) is as poorly defined as ‘informal’, and that almost never occurs in anything resembling a ‘pure’ form: there is hardly ever any formal learning without informal learning lurking close by. It would be a lot easier if we just talked about formal teaching, because that does refer to a much clearer set of better-defined activities, but teaching is not at all the same thing as learning. Indeed, sometimes the relationship is very oblique indeed, notwithstanding Frere’s claims that you cannot call it teaching unless learning occurs. And then there’s the complex role of credentials of various kinds in both assessing and influencing learning. We wanted to find a way to capture the richness of that, but could find no existing work that worked well enough for us.

We went through a lot of different concepts and representations (yes, there were Venn diagrams!) before finally hitting on the notion that it is not so much a two-dimensional continuum between formal and informal, but a multi-dimensional spectrum defined in terms of relative degrees of dependence/independence and intentionality/non-intentionality.

 

Informal learning as a 3D continuum, with dimensions of dependence/self-direction and incidental/intentional

We (tentatively) reckon that we can situate at least most existing work in the field within this framework, and that it provides a helpful way of thinking about whatever is happening in a particular moment of a learning trajectory (another concept from Erault that I’ve found very useful in the past, especially when talking about transactional control in my first book). An individual’s learning trajectory will constantly wind around this space and, when other individuals are involved (not just formal teachers), their paths will affect one another in interesting ways. After we’d worked this out, the rest of the chapter fell more or less into place. You can read the result here.

Here’s the chapter abstract:

Governments, business leaders, educators, students, and parents realize the need to inculcate a culture of lifelong learning – learning that spans geography, time, and lifespan. This learning has both formal and informal components. In this chapter, we examine the conceptual basis upon which informal learning is defined and some of the tools and techniques used to support informal learning. We overview the rapid development in information and communications technologies that not only creates opportunities for learners, teachers, and researchers but also challenges us to create equitable and culturally appropriate tools and contexts in which high-quality, continuous learning is available to all.

Reference

Dron J., Anderson T. (2022) Informal Learning in Digital Contexts. In: Zawacki-Richter O., Jung I. (eds) Handbook of Open, Distance and Digital Education. Springer, Singapore. https://doi.org/10.1007/978-981-19-0351-9_84-1