Just a metatool? Some thoughts why generative AIs are not tools

hammer holding an AI nailMany people brush generative AI aside as being just a tool. ChatGPT describes itself as such (I asked). I think it’s more complicated than that, and this post is going to be an attempt to explain why. I’m not sure about much of what follows and welcome any thoughts you may have on whether this resonates with you and, if not, why not.

What makes something a tool

I think that to call something a tool is shorthand for it having all of the following 5 attributes:

  1. It is an object (physical, digital, cognitive, procedural, organizational, structural, conceptual, spiritual, etc. – i.e. the thing we normally identify as the tool),
  2. used with/designed for a purpose, that
  3. can extend the capabilities of an actor (an intelligent agent, typically human), who
  4. may perform an organized action or series of actions with it, that
  5. cause changes to a subject other than the tool itself (such as a foodstuff, or piece of paper, a mental state, or a configuration of bits),

More informally, less precisely, but perhaps more memorably:

A tool is something that an intelligent agent does something with in order to do something to something else

Let me unpack that a bit.

A pebble used as a knife sharpener is a tool, but one used to reinforce concrete is not. A pen used to write on paper is a tool, but the paper is not. The toolness in each case emerges from what the agent does and the fact that it is done to something, in order to achieve something (a sharp knife, some writing).

Any object we label as a tool can become part of another with different organization. A screwdriver can become an indefinitely large number of other tools  apart from one intended for driving screws. In fact, almost anything can become a tool with the right organization. The paper can be a tool if it is, say, used to scoop up dirt. And, when I say “paper”, remember that this is the label for the object I am calling a tool, but it is the purpose, what it does, how it is organized, and the subject it acts upon that makes it so.

It is not always easy to identify the “something else” that a tool affects. A saw used to cut wood is an archetypal tool, but a saw played with a bow to make music is, I think, not. Perhaps the bow is a tool, and maybe we could think of the saw as a tool acting on air molecules, but I think we tend to perceive it as the thing that is acted upon rather than the thing we do something with.

Toolness is intransitive: a computer may be a tool for running programs, and a program running on it may be a tool that fixes a corrupt disk, but a computer is not a tool for fixing a corrupt disk.

A great many tools are also a technologies in their own right. The intention and technique of the tool maker combines with that of the tool user, so the tool user may achieve more (or more reliably, faster, more consistently, etc) than would be possible without both. A fountain pen adds more to the writing assembly than a quill, for instance, so demanding less of the writer. Many tools are partnerships of this nature, allowing the cognition of more than one person to be shared. This is the ratchet that makes humans smart.

Often, the organization performed by the maker of a technology entirely replaces that of the tool user. A dish sponge is a tool, but a dishwasher is not: it is an appliance. Some skill is needed to load it but the dishwashing itself – the purpose for which it is designed – is entirely managed by the machine.

The case is less clear for an appliance like, say, a vacuum cleaner. I think this is because there are two aspects to the device: the mechanism that autonomously sucks dirt is what makes it an appliance, but the hose (or whatever) used to select the dirt to be removed is a tool. This is reflected in common usage, inasmuch as a vacuum cleaner is normally sold with what are universally described as tools (i.e. the things that a person actively manipulates). The same distinction is still there in a handheld machine, too – in fact, many come with additional tools – though I would be much more comfortable describing the whole device as a tool, because that’s what is manipulated to suck up the dirt. Many power tools fit in this category: they do some of the work autonomously but they are still things people do something with in order to do something to something else.

Humans can occasionally be accurately described as tools: the movie Swiss Army Man, for instance, features Daniel Radcliffe as a corpse that turns out to have many highly inventive uses. For real live humans, though, the case is less clear.  Employees in scripted call centres, or teachers following scripted lesson plans are more like appliances than tools: having been “programmed”, they run autonomously, so the scripts may be tools but the people are not. Most other ways of using other people are even less tool-like. If I ask you to pick up some shopping for me, say, then my techniques of persuasion may be tools, but you are the one organizing phenomena to shop, which is the purpose in question.

The case is similar for sheepdogs (though they are not themselves tool users), that I would be reluctant to label as tools, though skills are clearly needed to make them do our bidding and they do serve tool-like purposes as part of the technology of shepherding. The tools, though, are the commands, methods of training, treats, and so on, not the animals themselves.

Why generative AIs are not tools

For the same reasons of transitivity that dishwashers, people, and sheepdogs are not normally tools, neither are generative AIs. Prompts and other means of getting AIs to do our bidding are tools but generative AIs themselves work autonomously.  This comes with the proviso that almost anything can be repurposed so there is nothing that is not at least latently a tool but, at least in their most familiar guises, generative AIs tend not to be.

Unlike conventional appliances, but more like sheepdogs, the work generative AIs perform is neither designed by humans nor scrutable to us. Unlike sheepdogs, but more like humans, generative AIs are tool users, too: not just (or not so much) words, but libraries, programming languages, web crawlers, filters, and so on. Unlike humans, though, generative AIs act with their users’ intentions, not their own, expressed through the tools with which we interact with them.  They are a bit like partial brains, perhaps, remarkably capable but not aware of nor able to use that capability autonomously.

It’s not just chatbots. Many recommender systems and search engines (increasingly incorporating deep learning), also sit uncomfortably in the category of tools, though they are often presented as such. Amazon’s search, say, is not (primarily) designed to help you find what you are looking for but to push things at you that Amazon would like you to buy, which is why you must troll through countless not-quite-right things despite it being perfectly capable of exactly matching your needs. If it is anyone’s tool, it is Amazon’s, not ours. The same for a Google search: the tools are your search terms, not Google Search, and it is acting quite independently in performing the search and returning results that are likely more beneficial to Google than to you. This is not true of all search systems. If I search for a file on my own computer then, if it fails to provide what I am looking for, it is a sign that the tool (and I think it is a tool because the results should be entirely determinate) is malfunctioning. Back in those far off days when Amazon wanted you to find what you wanted or Google tried to provide the closest match to your search term, if not tools then we could at least think of them as appliances designed to be controlled by us.

I think we need a different term for these things. I like “metatool” because it is catchy and fairly accurate. A metatool is something that uses tools to do our bidding, not a tool in its own right.  It is something that we use tools to act upon that is itself a tool user. I think this is better than a lot of other metaphors we might use: slave, assistant (Claude describes itself, incidentally, not as ‘merely’ a tool, but as an intelligent assistant), partner, co-worker, contractor, etc all suggest more agency and intention than generative AIs actually possess, but appliance, machine, device, etc fail to capture the creativity, tailoring, and unpredictability of the results.

Why it matters

The big problem with treating generative AIs as tools is that it overplays our own agency and underplays the creative agency of the AI. It encourages us to think of them, like actual tools, as, cognitive prostheses, ways of augmenting and amplifying but still using and preserving human cognitive capabilities, when what we are actually doing is using theirs. It also encourages us to think the results will be more deterministic than they actually are. This is not to negate the skill needed to use prompts effectively, nor to underplay the need to understand what the prompt is acting upon. Just as the shepherd needs to know the sheepdog, the genAI user has to know how their tools will affect the medium.

Like all technologies, these strange partial brains effectively enlarge our own. All other technologies, though, embed or embody other humans’ thinking and/or our own. Though largely consisting of the compressed expressed thoughts of millions of people, AI’s thoughts are not human thoughts: even using the most transparent of them, we have very little access to the mechanisms behind their probablistic deliberations. And yet, nor are they independent thinking agents. Like any technology we might think of them as cognitive extensions but, if they are, then it is as though we have undergone an extreme form of corpus callosotomy, or we are experiencing something like Jaynes’s bicameral mind. Generative AIs are their own thing: an embodiment of collective intelligence as well as contributors to our own, wrapped up in a whole bunch of intentional programming and training that imbues them, in part, with (and I find this very troubling) the values of their creators and in part with the sum output of a great many humans who created the data on which they are trained.

I don’t know whether this is, ultimately, a bad thing. Perhaps it is another stage in our evolution that will make us more fit to deal with the complex world and new problems in it that we collectively continue to create. Perhaps it will make us less smart, or more the same, or less creative. Perhaps it will have the opposite effects. Most likely it will involve a bit of all of that. I think it is important that we recognize it as something new in the world, though, and not just another tool.

Venturing into the Unknown: Critical Insights into Grey Areas and Pioneering Future Directions in Educational Generative AI Research | TechTrends

The latest paper I can proudly add to my list of publications,  Venturing into the Unknown: Critical Insights into Grey Areas and Pioneering Future Directions in Educational Generative AI Research has been published in the (unfortunately) closed journal TechTrends. Here’s a direct link to the paper that should hopefully bypass the paywall, if it has not been used too often.

I’m 16th of 47 coauthors, led by the truly wonderful Junhong Xiao, who is the primary orchestrator and mastermind behind it. This is a companion piece to our Manifesto for Teaching and Learning in a Time of Generative AI and it starts where the other paper left off, delving further into what we don’t know (or at least do not agree that we know) about and (taking up most of the paper) what we might do about that lack of knowledge. I think this presents a pretty useful and wide-ranging research agenda for anyone with an interest in AI and education.

Methodologically, it emerged through a collaborative writing process between a very multinational group of international researchers in open, digital, and online learning. It’s not a random sample of people who happen to know one another: the huge group represents a rich mix of (extremely) well-established and (excellent) emerging researchers from a broad set of cultural backgrounds, covering a wide range of research interests in the field. Junhong does a great job of extracting the themes and organizing all of that into a coherent narrative.

In many ways I like this paper more than its companion piece. I think this is because, though its findings are – as the title implies – less well-defined than the first, I am more closely aligned with the underlying assumptions, attitudes and values that underpin the analysis. It grapples more firmly with the wicked problems and it goes deeper into the broader, situated, human nature of the systems in which generative AI is necessarily intertwingled, skimming over the more simplistic conversations about cheating, reliability, and so on to get at some meatier but more fundamental issues that, ultimately, relate to how and why we do this education thing in the first place.

Abstract

Advocates of AI in Education (AIEd) assert that the current generation of technologies, collectively dubbed artificial intelligence, including generative artificial intelligence (GenAI), promise results that can transform our conceptions of what education looks like. Therefore, it is imperative to investigate how educators perceive GenAI and its potential use and future impact on education. Adopting the methodology of collective writing as an inquiry, this study reports on the participating educators’ perceived grey areas (i.e. issues that are unclear and/or controversial) and recommendations on future research. The grey areas reported cover decision-making on the use of GenAI, AI ethics, appropriate levels of use of GenAI in education, impact on learning and teaching, policy, data, GenAI outputs, humans in the loop and public–private partnerships. Recommended directions for future research include learning and teaching, ethical and legal implications, ownership/authorship, funding, technology, research support, AI metaphor and types of research. Each theme or subtheme is presented in the form of a statement, followed by a justification. These findings serve as a call to action to encourage a continuing debate around GenAI and to engage more educators in research. The paper concludes that unless we can ask the right questions now, we may find that, in the pursuit of greater efficiency, we have lost the very essence of what it means to educate and learn.

Reference

Xiao, J., Bozkurt, A., Nichols, M., Pazurek, A., Stracke, C. M., Bai, J. Y. H., Farrow, R., Mulligan, D., Nerantzi, C., Sharma, R. C., Singh, L., Frumin, I., Swindell, A., Honeychurch, S., Bond, M., Dron, J., Moore, S., Leng, J., van Tryon, P. J. S., … Themeli, C. (2025). Venturing into the Unknown: Critical Insights into Grey Areas and Pioneering Future Directions in Educational Generative AI Research. TechTrends. https://doi.org/10.1007/s11528-025-01060-6

How AI works for education: an interview with me for AACE Review

Thanks to Stefanie Panke for some great questions and excellent editing in this interview with me for the AACE Review.

The content is in fact the product of two discussions, one coming from student questions at the end of a talk that I gave for the Asian University for Women just before Christmas, the other asynchronously with Stefanie herself.

Stefanie did a very good job of making sense of my rambling replies to the students that spanned quite a few issues, including some from my book, How Education Works, some with (mainly) generative AI, and a little about the intersection of collective and artificial intelligence. Stefanie’s own prompts were great: they encouraged me to think a little differently, and to take some enjoyable detours along the way around the evils of learning management systems, artificially-generated music, and  social media, as well as a discussion of the impact of generative AI on learning designers, thoughts on legislation to control AI, and assessment.

Here are the slides from that talk at AUW – I’ve not posted this separately because hardly any are new: it mostly cobbles together two recent talks, one for Contact North and the other my keynote for ICEEL ’24. The conversation afterwards was great, though, thanks to a wonderfully thoughtful and enthusiastic bunch of very smart students.

The collective ochlotecture of large language models: slides from my talk at CI.edu, 2024

Here are my slides from the 1st International Symposium on Educating for Collective Intelligence, last week, here is my paper on which it was based, and here is the video of the talk itself:

You can find this and videos of the rest of the stunning line-up of speakers at https://www.youtube.com/playlist?list=PLcS9QDvS_uS6kGxefLFr3kFToVIvIpisn It was an incredibly engaging and energizing event: the chat alone was a masterclass in collective intelligence that was difficult to follow at times but that was filled with rich insights and enlightening debates. The symposium site, that has all this and more, is at https://cic.uts.edu.au/events/collective-intelligence-edu-2024/

Collective intelligence, represented in the style of 1950s children's books.With just 10 minutes to make the case and 10 minutes for discussion, none of us were able to go into much depth in our talks. In mine I introduced the term “ochlotecture”, from the Classical Greek ὄχλος (ochlos), meaning  “multitude” and τέκτων (tektōn) meaning “builder” to describe the structures and processes that define the stuff that gives shape and form to collections of people and their interactions. I think we need such a term because there are virtually infinite ways that such things can be configured, and the configuration makes all the difference. We blithely talk of things like groups, teams, clubs, companies, squads, and, of course, collectives, assuming that others will share an understanding of what we mean when, of course, they don’t. There were at least half a dozen quite distinct uses of the term “collective intelligence” in this symposium alone. I’m still working on a big paper on this subject that goes into some depth on the various dimensions of interest as they pertain to a wide range of social organizations but, for this talk, I was only concerned with the ochlotecture of collectives (a term I much prefer to “collective intelligence” because intelligence is such a slippery word, and collective stupidity is at least as common). From an ochlotectural perspective, these consist of a means of collecting crowd-generated information, processing it, and presenting the processed results back to the crowd. Human collective ochlotectures often contain other elements – group norms, structural hierarchies, schedules, digital media, etc – but I think those are the defining features. If I am right then large language models (LLMs) are collectives, too, because that is exactly what they do. Unlike most other collectives, though (a collectively driven search engine like Google Search being one of a few partial exceptions) the processing is unique to each run of the cycle, generated via a prompt or similar input. This is what makes them so powerful, and it is what makes their mimicry of human soft technique so compelling.

I did eventually get around to the theme of the conference. I spent a while discussing why LLMs are troubling – the fact that we learn values, attitudes, ways of being, etc from interacting with them; the risks to our collective intelligence caused by them being part of the crowd, not just aggregators and processors of its outputs; and the potential loss of the soft, creative skills they can replace – and ended with what that implies for how we should act as educators: essentially, to focus on the tacit curriculum that has, till now, always come from free; to focus on community because learning to be human from and with other humans is what it is all about; and to decouple credentials so as to reduce the focus on measurable outcomes that AIs can both teach and achieve better than an average human. I also suggested a couple of principles for dealing with generative AIs: to treat them as partners rather than tools, and to use them to support and nurture human connections, as ochlotects as much as parts of the ochlotecture.

I had a point to make in a short time, so the way I presented it was a bit of a caricature of my more considered views on the matter. If you want a more balanced view, and to get a bit more of the theoretical backdrop to all this, Tim Fawns’s talk (that follows mine and that will probably play automatically after it if you play the video above) says it all, with far greater erudition and lucidity, and adds a few very valuable layers of its own. Though he uses different words and explains it far better than I, his notion of entanglement closely echoes my own ideas about the nature of technology and the roles it plays in our cognition. I like the word “intertwingled” more than “entangled” because of its more positive associations and the sense of emergent order it conveys, but we mean substantially the same thing: in fact, the example he gave of a car is one that I have frequently used myself, in exactly the same way.

How AI Teaches Its Children: slides and reflections from my keynote for AISUMMIT-2024

Late last night I gave the opening keynote at the Global AI Summit 2024, International Conference on Artificial Intelligence and Emerging Technology,  hosted by Bennett University, Noida, India. My talk was online. Here are the slides: How AI Teaches Its Children. It was recorded but I don’t know when or whether or with whom it will be shared: if possible I will add it to this post.

a robot teaching children in the 18th Century
a robot teaching children in the 18th Century

For those who have been following my thoughts on generative AI there will be few surprises in my slides, and I only had half an hour so there was not much time to go into the nuances. The title is an allusion to Pestalozzi’s 18th Century tract, How Gertrude Teaches Her Children, which has been phenomenally influential to the development of education systems around the world and that continues to have impact to this day. Much of it is actually great: Pestalozzi championed very child-centric teaching approaches that leveraged the skills and passions of their teachers. He recommended methods of teaching that made full use of the creativity and idiosyncratic knowledge the teachers possessed and that were very much concerned with helping children to develop their own interests, values and attitudes. However, some of the ideas – and those that have ultimately been more influential – were decidedly problematic, as is succinctly summarized in this passage on page 41:

I believe it is not possible for common popular instruction to advance a step, so long as formulas of instruction are not found which make the teacher, at least in the elementary stages of knowledge, merely the mechanical tool of a method, the result of which springs from the nature of the formulas and not from the skill of the man who uses  it.

This is almost the exact opposite of the central argument of my book, How Education Works, that mechanical methods are not the most important part of a soft technology such as teaching: what usually matters more is how it is done, not just what is done. You can use good methods badly and bad methods well because you are a participant in the instantiation of a technology, responsible for the complete orchestration of the parts, not just a user of them.

As usual, in the talk I applied a bit of co-participation theory to explain why I am both enthralled by and fearful of the consequences of generative AIs because they are the first technologies we have ever built that can use other technologies in ways that resemble how we use them. Previous technologies only reproduced hard technique – the explicit methods we use that make us part of the technology. Generative AIs reproduce soft technique, assembling and organizing phenomena in endlessly novel ways to act as creators of the technology. They are active, not passive participants.

Two dangers

I see there to be two essential risks lying in the delegation of soft technique to AIs. The first is not too terrible: that, because we will increasingly delegate creative activities we would have otherwise performed ourselves to machines, we will not learn those skills ourselves. I mourn the potential passing of hard skills in (say) drawing, or writing, or making music, but the bigger risk is that we will lose the the soft skills that come from learning them: the things we do with the hard skills, the capacity to be creative.

That said, like most technologies, generative AIs are ratchets that let us do more than we could achieve alone. In the past week, for instance, I “wrote” an app that would have taken me many weeks without AI assistance in a less than a day. Though it followed a spec that I had carefully and creatively written, it replaced the soft skills that I would have applied had I written it myself, the little creative flourishes and rabbit holes of idea-following that are inevitable in any creation process. When we create we do so in conversation with the hard technologies available to us (including our own technique), using the affordances and constraints to grasp adjacent possibles they provide. Every word we utter or wheel we attach to an axle opens and closes opportunities for what we can do next.

With that in mind, the app that the system created was just the beginning. Having seen the adjacent possibles of the finished app, I have spent too many hours in subsequent days extending and refining the app to do things that, in the past, I would not have bothered to do because they would have been too difficult. It has become part of my own extended cognition, starting higher up the tree than I would have reached alone. This has also greatly improved my own coding skills because, inevitably, after many iterations, the AI and/or I started to introduce bugs, some of which have been quite subtle and intractable. I did try to get the AI to examine the whole code (now over 2000 lines of JavaScript) and rewrite it or at least to point out the flaws, but that failed abysmally, amply illustrating both the strength of LLMs as creative participants in technologies, and their limitations in being unable to do the same thing the same way twice. As a result, the AI and I have have had to act as partners trying to figure out what is wrong. Often, though the AI has come up with workable ideas, its own solution has been a little dumb, but I could build on it to solve the problem better. Though I have not actually created much of the code myself, I think my creative role might have been greater than it would have been had I written every line.

Similarly for the images I used to illustrate the talk: I could not possibly have drawn them alone but, once the AI had done so, I engaged in a creative conversation to try (sometimes very unsuccessfully) to get it to reproduce what I had in mind. Often, though, it did things that sparked new ideas so, again, it became a partner in creation, sharing in my cognition and sparking my own invention. It was very much not just a tool: it was a co-worker, with different and complementary skills, and “ideas” of its own. I think this is a good thing. Yes, perhaps it is a pity that those who follow us may not be able to draw with a pen (and more than a little worrying thinking about the training sets that future AIs with learn to draw from), but they will have new ways of being creative.

Like all learning, both these activities changed me: not just my skills, but my ways of thinking. That leads me to the bigger risk.

Learning our humanity from machines

The second risk is more troubling: that we will learn ways of being human from machines. This is because of the tacit curriculum that comes with every learning interaction. When we learn from others, whether they are actively teaching, writing textbooks, showing us, or chatting with us, we don’t just learn methods of doing things: we learn values, attitudes, ways of thinking, ways of understanding, and ways of being at the same time. So far we have only learned that kind of thing from humans (sometimes mediated through code) and it has come for free with all the other stuff, but now we are doing so from machines. Those machines are very much like us because 99% of what they are – their training sets – is what we have made, but they not the same. Though LLMs are embodiments of our own collective intelligence, they don’t so much lack values, attitudes, ways of thinking etc as they have any and all of them. Every implicit value and attitude of the people whose work constituted their training set is available to them, and they can become whatever we want them to be. Interacting with them is, in this sense, very much not like interacting with something created by a human, let alone with humans more directly. They have no identity, no relationships, no purposes, no passion, no life history and no future plans. Nothing matters to them.

To make matters worse, there is programmed and trained stuff on top of that, like their interminable cheery patience  that might not teach us great ways of interacting with others. And of course it will impact how we interact with others because we will spend more and more time engaged with it, rather than with actual humans. The economic and practical benefits make this an absolute certainty. LLMs also use explicit coding to remove or massage data from the input or output, reflecting the values and cultures of their creators for better or worse. I was giving this talk in India to a predominantly Indian audience of AI researchers, every single one of whom was making extensive use of predominantly American LLMs like ChatGPT, Gemini, or Claude, and (inevitably) learning ways of thinking and doing from it. This is way more powerful than Hollywood as an instrument of Americanization.

I am concerned about how this will change our cultures and our selves because this is happening at phenomenal and global scale, and it is doing so in a world that is unprepared for the consequences, the designed parts of which assume a very different context. One of generative AI’s greatest potential benefits lies in the potential to provide “high quality” education at low cost to those who are currently denied it, but those low costs will make it increasingly compelling for everyone. However, because of the designs that assume a different context “quality”, in this sense, relates to the achievement of explicit learning outcomes: this is Pestalozzi’s method writ large. Generative AIs are great at teaching what we want to learn – the stuff we could write down as learning objectives or intended outcomes – so, as that is the way we have designed our educational systems (and our general attitudes to learning new skills), of course we will use them for that purpose. However, that cannot be done without teaching the other stuff – the tacit curriculum – which is ultimately more important because it shapes how we are in the world, not just the skills we employ to be that way. We might not have designed our educational systems to do that, and we seldom if ever think about it when teaching ourselves or receiving training to do something, but it is perhaps education’s most important role.

By way of illustration, I find it hugely bothersome that generative AIs are being used to write children’s stories (and, increasingly, videos) and I hope you feel some unease too, because those stories – not the facts in them but the lessons about things that matter that they teach – are intrinsic to them becoming who they will become. However, though perhaps of less magnitude, the same issue relates to learning everything from how to change a plug to how to philosophize: we don’t stop learning from the underlying stories behind those just because we have grown up. I fear that educators, formal or otherwise, will become victims of the McNamara Fallacy, setting our goals to achieve what is easily measurable while ignoring what cannot (easily) be measured, and so rush blindly towards subtly new ways of thinking and acting that few will even notice, until the changes are so widespread they cannot be reversed. Whether better or worse, it will very definitely be different, so it really matters that we examine and understand where this is all leading. This is the time, I believe, to reclaim a revalorize the value of things that are human before it is too late. This is the time to recognize education (far from only formal) as being how we become who we are, individually and collectively, not just how we meet planned learning outcomes. And I think (at least hope) that we will do that. We will, I hope, value more than ever the fact that something – be it a lesson plan or a book or a screwdriver – is made by someone or by a machine that has been explicitly programmed by someone. We will, I hope, better recognize  the relationships between us that it embodies, the ways it teaches us things it does not mean to teach, and the meaning it has in our lives as a result. This might happen by itself – already there is a backlash against the bland output of countless bots – but it might not be a bad idea to help it along when we can. This post (and my talk last night) has been one such small nudge.

Sets, nets and groups revisited

Here are the slides from a talk I gave earlier today, hosted by George Siemens and his fine team of people at Human Systems. Terry Anderson helped me to put the slides together, and offered some great insights and commentary after the presentation but I am largely to blame for the presentation itself. Our brief was to talk about sets, nets and groups, the theme of our last book Teaching Crowds: learning and social media and much of our work together since 2007 but, as I was the one presenting, I bent it a little towards generative AI and my own intertwingled perspective on technologies and collective cognition, which is most fully developed (so far) in my most recent book, How Education Works: Teaching, Technology, and Technique. If you’re not familiar with our model of sets, nets, groups and collectives, there’s a brief overview on the Teaching Crowds website. It’s a little long in the tooth but I think it is still useful and will help to frame what follows.

A recreation of the famous New Yorker cartoon, "On the Internet no one knows you are a dog" showing a dog using a web browser - but it is a robot dog
A recreation of the famous New Yorker cartoon, “On the Internet no one knows you are a dog” – but it is a robot dog

The key new insight that appears for the first time in this presentation is that, rather than being a fundamental social form in their own right, groups consist of technological processes that make use of and help to engender/give shape to the more fundamental forms of nets and sets. At least, I think they do: I need to think and talk some more about this, at least with Terry, and work it up into a paper, but I haven’t yet thought through all the repercussions. Even back when we wrote the book I always thought of groups as technologically mediated entities but it was only when writing these slides in the light of my more recent thinking on technology that I paid much attention to the phenomena that they actually orchestrate in order to achieve their ends. Although there are non-technological prototypes – notably in the form of families – these are emergent rather than designed. The phenomena that intentional groups primarily orchestrate are those of networks and sets, which are simply configurations of humans and their relationships with one another. Modern groups – in a learning context, classes, cohorts, tutorial groups, seminar groups, and so on – are designed to fulfill more specific purposes than their natural prototypes, and they are made possible by technological inventions such as rules, roles, decision-making processes, and structural hierarchies. Essentially, the group is a purpose-driven technological overlay on top of more basic social forms. It seems natural, much as language seems natural, because it is so basic and fundamental to our existence and how everything else works in human societies, but it is an invention (or many inventions, in fact) as much as wheels and silicon chips.

Groups are among the oldest and most highly evolved of human technologies and they are incredibly important for learning, but they have a number of inherent flaws and trade-offs/Faustian bargains, notably in their effects on individual freedoms, in scalability (mainly achieved through hierarchies), in sometimes unhealthy power dynamics, and in limitations they place on roles individuals play in learning. Modern digital technologies can help to scale them a little further and refine or reify some of the rules and roles, but the basic flaws remain. However, modern digital technologies also offer other ways of enabling sets and networks of people to support one another’s learning, from blogs and mailing lists to purpose-built social networking systems, from Wikipedia and Academia.edu to Quora, in ways that can (optionally) integrate with and utilize groups but that differ in significant ways, such as in removing hierarchies, structuring through behaviour (collectives) and filtering or otherwise mediating messages. With some exceptions, however, the purposes of large-scale systems of this nature (which would provide an ideal set of phenomena to exploit) are not usually driven by a need for learning, but by a need to gain attention and profit. Facebook, Instagram, LinkedIn, X, and others of their ilk have vast networks to draw on but few mechanisms that support learning and limited checks and balances for reliability or quality when it does occur (which of course it does). Most of their algorithmic power is devoted to driving engagement, and the content and purpose of that engagement only matters insofar as it drives further engagement. Up to a point, trolls are good for them, which is seldom if ever true for learning systems. Some – Wikipedia, the Khan Academy, Slashdot, Stack Exchange, Quora, some SubReddits, and so on – achieve both engagement and intentional support for learning. However, they remain works in progress in the latter regard, being prone to a host of ills from filter bubbles and echo chambers to context collapse and the Matthew Effect, not to mention intentional harm by bad actors. I’ve been exploring this space for approaching 30 years now, but there remains almost as much scope for further research and development in this area as there was when I began. Though progress has been made, we have yet to figure out the right rules and structures to deal with a great many problems, and it is increasingly difficult to slot the products of our research into an increasingly bland, corporate online space dominated by a shrinking number of bland, centralized learning management systems that continue to refine their automation of group processes and structures and, increasingly, to ignore the sets and networks on which they rely.

With that in mind, I see big potential benefits for generative AIs – the ultimate collectives – as supporters and enablers for crowds of people learning together. Generative AI provides us with the means to play with structures and adapt in hitherto impossible ways, because the algorithms that drive their adaptations are indefinitely flexible, the reified activities that form them are vast, and the people that participate in them play an active role in adjusting and forming their algorithms (not the underpinning neural nets but the emergent configurations they take). These are significant differences from traditional collectives, that tend to have one purpose and algorithm (typically complex but deterministic), such as returning search results or engaging network interactions.  I also see a great many potential risks, of which I have written fairly extensively of late, most notably in playing soft orchestral roles in the assembly that replace the need for humans to learn to play them. We tread a fine line between learning utopia and learning dystopia, especially if we try to overlay them on top of educational systems that are driven by credentials. Credentials used to signify a vast range of tacit knowledge and skills that were never measured, and (notwithstanding a long tradition of cheating) that was fine as long as nothing else could create those signals, because they were serviceable proxies. If you could pass the test or assignment, it meant that you had gone through the process and learned a lot more than what was tested. This has been eroded for some time, abetted by social media like Course Hero or Chegg that remain quite effective ways of bypassing the process for those willing to pay a nominal sum and accept the risk. Now that generative AI can do the same at considerably lower cost, with greater reliability, and lower risk, without having gone through the process, they no longer make good signifiers and, anyway (playing Devil’s advocate), it remains unclear to what extent those soft, tacit skills are needed now that generative AIs can achieve them so well.  I am much encouraged by the existence of George’s Paul LeBlanc’s lab initiative, the fact that George is the headliner chief scientist for it, its intent to enable human-centred learning in an age of AI, and its aspiration to reinvent education to fit. We need such endeavours. I hope they will do some great things.

Proctored exams have fallen to generative AI

A Turkish university candidate was recently arrested after being caught using an AI-powered system to obtain answers to the entrance exam in real-time.

Source: Student Caught Using Artificial Intelligence to Cheat on University Entrance Test Students wired up to a computer while taking their exams

A couple of years ago (and a few times since) I observed that proctored exams offer no meaningful defence against generative AI so I am a little surprised it has taken so long for someone to be caught doing this. I guess that others have been more careful.

The candidate used a simple and rather obvious set-up: a camera disguised as a shirt button that was used to read the questions, a router hidden in a hollowed-out shoe linking to a stealthily concealed mobile device that queried a generative AI (likely ChatGPT-powered) that fed the answers back verbally to an in-ear bluetooth earpiece. Constructing such a thing would take a little ingenuity but it’s not rocket science. It’s not even computer science. Anyone could do this. It would take some skill to make it work well, though, and that may be the reason this attempt went wrong. The candidate was caught as a result of their suspicious behaviour, not because anyone directly noticed the tech. I’m trying to imagine the interface, how the machine would know which question to answer (did the candidate have to point their button in the right direction?), how they dealt with dictating the answers at a usable speed (what if they needed it to be repeated? Did they have to tap a microphone a number of times?), how they managed sequence and pacing (sub-vocalization? moving in a particular way?). These are soluble problems but they are not trivial, and skill would be needed to make the whole thing seem natural.

It may take a little while for this to become a widespread commodity item (and a bit longer for exam-takers to learn to use it unobtrusively), but I’m prepared to bet that someone is working on it, if it is not already available. And, yes, exam-setters will come up with a counter-technology to address this particular threat (scanners? signal blockers? Forcing students to strip naked?) but the cheats will be more ingenious, the tech will improve, and so it will go on, in an endless and unwinnable arms race.

Very few people cheat as a matter of course. This candidate was arrested – exam cheating is against the law in Turkey – for attempting to solve the problem they were required to solve, which was to pass the test, not to demonstrate their competence. The level of desperation that led to them adopting such a risky solution to the problem is hard to imagine, but it’s easy to understand how high the stakes must have seemed and how strong the incentive to succeed must have been. The fact that, in most societies, we habitually inflict such tests on both children and adults, on an unimaginably vast scale, will hopefully one day be seen as barbaric, on a par with beating children to make them behave. They are inauthentic, inaccurate, inequitable and, most absurdly of all, a primary cause of the problem they are designed to solve. We really do need to find a better solution.

Note on the post title: the student was caught so, as some have pointed out,  it would be an exaggeration to say that this one case is proof that proctored exams have fallen to generative AI, but I think it is a very safe assumption that this is not a lone example. This is a landmark case because it provides the first direct evidence that this is happening in the wild, not because it is the first time it has ever happened.

▶ I got air: interview with Terry Greene

Since 2018, Terry Greene has been producing a wonderful series of podcast interviews with open and online learning researchers and practitioners called Getting Air. Prompted by the publication of How Education Works, (Terry is also responsible for the musical version of the book, so I think he likes it) this week’s episode features an interview with me.

I probably should have been better prepared. Terry asked some probing, well-informed, and sometimes disarming questions, most of which led to me rambling more than I might have done if I’d thought about them in advance. It was fun, though, drifting through a broad range of topics from the nature of technology to music to the perils of generative AI (of course).

I hope that Terry does call his PhD dissertation “Getting rid of instructional designers”.

Educational ends and means: McNamara’s Fallacy and the coming robot apocalypse (presentation for TAMK)

 

These are the slides that I used for my talk with a delightful group of educational leadership students from TAMK University of Applied Sciences in Tampere, Finland at (for me) a somewhat ungodly hour Wednesday night/Thursday morning after a long day. If you were in attendance, sorry for any bleariness on my part. If not, or if you just want to re-live the moment, here is the video of the session (thanks Mark!)man shaking hands with a robot

The brief that I was given was to talk about what generative AI means for education and, if you have been following any of my reflections on this topic then you’ll already have a pretty good idea of what kinds of issues I raised about that. My real agenda, though, was not so much to talk about generative AI as to reflect on the nature and roles of education and educational systems because, like all technologies, the technology that matters in any given situation is the enacted whole rather than any of its assembled parts. My concerns about uses of generative AI in education are not due to inherent issues with generative AIs (plentiful though those may be) but to inherent issues with educational systems that come to the fore when you mash the two together at a grand scale.

The crux of this argument is that, as long as we think of the central purposes of education as being the attainment of measurable learning outcomes or the achievement of credentials, especially if the focus is on training people for a hypothetical workplace, the long-term societal effects of inserting generative AIs into the teaching process are likely to be dystopian. That’s where Robert McNamara comes into the picture. The McNamara Fallacy is what happens when you pick an aspect of a system to measure, usually because it is easy, and then you use that measure to define success, choosing to ignore or to treat as irrelevant anything that cannot be measured. It gets its name from Robert McNamara, US Secretary of Defense during the Vietnam war, who famously measured who was winning by body count, which is probably among the main reasons that the US lost the war.

My concern is that measurable learning outcomes (and still less the credentials that signify having achieved them) are not the ends that matter most. They are, more, means to achieve far more complex, situated, personal and social ends that lead to happy, safe, productive societies and richer lives for those within them. While it does play an important role in developing skills and knowledge, education is thus more fundamentally concerned with developing values, attitudes, ways of thinking, ways of seeing, ways of relating to others, ways of understanding and knowing what matters to ourselves and others, and finding how we fit into the social, cultural, technological, and physical worlds that we inhabit. These critical social, cultural, technological, and personal roles have always been implicit in our educational systems but, at least in in-person institutions, it seldom needs to be made explicit because it is inherent in the structures and processes that have evolved over many centuries to meet this need. This is why naive attempts to simply replicate the in-person learning experience online usually fail: they replicate the intentional teaching activities but neglect to cater for the vast amounts of learning that occur simply due to being in a space with other people, and all that emerges as a result of that. It is for much the same reasons that simply inserting generative AI into existing educational structures and systems is so dangerous.

If we choose to measure the success or failure of an educational system by the extent to which learners achieve explicit learning outcomes and credentials, then the case for using generative AIs to teach is extremely compelling. Already, they are far more knowledgeable, far more patient, far more objective, far better able to adapt their teaching to support individual student learning, and far, far cheaper than human teachers. They will get better. Much better. As long as we focus only on the easily measurable outcomes and the extrinsic targets, simple economics combined with their measurably greater effectiveness means that generative AIs will increasingly replace teachers in the majority of teaching roles.  That would not be so bad – as Arthur C. Clarke observed, any teacher that can be replaced by a machine should be – were it not for all the other more important roles that education plays, and that it will continue to play, except that now we will be learning those ways of being human from things that are not human and that, in more or less subtle ways, do not behave like humans. If this occurs at scale – as it is bound to do – the consequences for future generations may not be great. And, for the most part, the AIs will be better able to achieve those learning outcomes themselves – what is distinctive about them is that they are, like us, tool users, not simply tools – so why bother teaching fallible, inconsistent, unreliable humans to achieve them? In fact, why bother with humans at all? There are, almost certainly, already large numbers of instances in which at least part of the teaching process is generated by an AI and where generative AIs are used by students to create work that is assessed by AIs.

It doesn’t have to be this way. We can choose to recognize the more important roles of our educational systems and redesign them accordingly, as many educational thinkers have been recommending for considerably more than a century. I provide a few thoughts on that in the last few slides that are far from revolutionary but that’s really the point: we don’t need much novel thinking about how to accommodate generative AI into our existing systems. We just need to make those systems work the way we have known they should work for a very long time.

Download the slides | Watch the video