Recording and slides from my ESET 2023 keynote: Artificial humanity and human artificiality

Here are the slides from my keynote at ESET23 in Taiwan (I was online, alas, not in Taipei!).

I will try to remember to update this post with a link to the recording, when it is available.

Here’s a recording of the actual keynote.

The themes of my talk will be familiar to anyone who follows my blog or who has read my recent paper on the subject. This is about applying the coparticipation theory from How Education Works to generative AI, raising concerns about the ways it mimics the soft technique of humans, and discussing how problematic that will be if the skills it replaces atrophy or are never learned in the first place, amongst other issues.

This is the abstract:

We are participants in, not just users of technologies. Sometimes we participate as orchestrators (for instance, when choosing words that we write) and sometimes as part of the orchestration (for instance, when spelling those words correctly). Usually, we play both roles.  When we automate aspects of technologies in which we are just parts of the orchestration, it frees us up to be able to orchestrate more, to do creative and problem-solving tasks, while our tools perform the hard, mechanical tasks better, more consistently, and faster than we could ourselves. Collectively and individually, we therefore become smarter. Generative AIs are the first of our technologies to successfully automate those soft, open-ended, creative cognitive tasks. If we lack sufficient time and/or knowledge to do what they do ourselves, they are like tireless, endlessly flexible personal assistants, expanding what we can do alone. If we cannot draw, or draw up a rental agreement, say, an AI will do it for us, so we may get on with other things. Teachers are therefore scrambling to use AIs to assist in their teaching as fast as students use AIs to assist with their assessments.

For achieving measurable learning outcomes, AIs are or will be effective teachers, opening up greater learning opportunities that are more personalized, at lower cost, in ways that are superior to average human teachers.  But human teachers, be they professionals, other students, or authors of websites, do more than help learners to achieve measurable outcomes. They model ways of thinking, ways of being, tacit knowledge, and values: things that make us human. Education is a preparation to participate in human cultures, not just a means of imparting economically valuable skills. What will happen as we increasingly learn those ways of being from a machine? If machines can replicate skills like drawing, reasoning, writing, and planning, will humans need to learn them at all? Are there aspects of those skills that must not atrophy, and what will happen to us at a global scale if we lose them? What parts of our cognition should we allow AIs to replace? What kinds of credentials, if any, will be needed? In this talk I will use the theory presented in my latest book, How Education Works: Teaching, Technology, and Technique to provide a framework for exploring why, how, and for what purpose our educational institutions exist, and what the future may hold for them.

Pre-conference background reading, including the book, articles, and blog posts on generative AI and education may be found linked from https://howeducationworks.ca