Cognitive prostheses and the future of the human race

head made of cogs I have lived in Canada for over 16 years so I was surprised when, a few months ago, a conference-friend whom  I had not seen for many years contacted me to ask whereabouts in Malaysia I lived. I believe that they were misremembering a connection from a conversation long ago in which I’d mentioned a recent visit (it was in fact a day-trip from Singapore) and combining that with the accurate recollection that I no longer lived in the UK.

Not long after, I was on a panel discussing the impact of ChatGPT during which I prompted ChatGPT to introduce me.  Here was its first attempt in response to the prompt “tell me about Jon Dron”. I’ve highlighted things that are true in green, and things that are false in red (emphasized for those unable to see the colours):

Jon Dron is a Canadian educator, researcher, and writer. He is known for his work in the field of e-learning and collaborative technologies. Dron has a PhD in Educational Technology from the University of Calgary, and has held academic positions at several universities in Canada, including Athabasca University, where he is currently a professor.

Dron has written extensively on topics such as online learning, social media, and the use of technology in education. He is the author of several books, including “Teaching Crowds: Learning and Social Media” and “E-Learning Theory and Practice.”

In addition to his academic work, Dron is also a musician and has released several albums of ambient and experimental music.

I’d say that there is not much difference between the human and machine recollections. I would almost certainly make at least as many mistakes if I were to asked to confidently describe a person I don’t know particularly well. In fact, I might make similar mistakes (not, please note, hallucinations) about quite close friends. Most of us don’t have eidetic memories: we reinvent recollections as much as we recall them. While there are surely many profound differences between how humans and large language models (LLMs) like ChatGPT process information, this is at least circumstantial evidence that some of the basic principles underlying artificial neural networks and biological neural networks are probably pretty similar. True, AIs do not know when they are making things up (or telling the truth, for that matter) but, in fairness, much of the time, neither do we. With a lot of intentional training we may be able to remember lines in a play or how to do long division but, usually, our recollections are like blurry JPEGs rather than RAW images.

Even for things we have intentionally learned to do or recall well, it is unusual for that training to stick without continual reinforcement, and mistakes are easily made. A few days ago I performed a set of around 30 songs (neither ambient nor experimental), most of which I had known for decades, all of which I had carefully practiced in the days leading up to the event to be sure I could play them as I intended. Here is a picture of me singing at that gig, drawn by my 6-year-old grandchild who was in attendance:

grandpa singing in the square

 

Despite my precautions and ample experience, in perhaps a majority of songs, I variously forgot words, chords, notes, and, in a couple of cases, whole verses. Combined with errors of execution (my fingers are not robotic, my voice gets husky) there was, I think, only one song in the whole set that came out more or less exactly as I intended. I have made such mistakes in almost every gig I have ever played. In fact, in well over 40 years as a performer, I have never played the same song in exactly the same way twice, though I have played some of them well over 10,000 times. Most of the variations are a feature, not a bug: they are where the expression lies. A performance is a conversation between performer, instruments, setting, and audience, not a mechanical copy of a perfect original. Nonetheless, my goal is usually to at least play the right notes and sing the right words, and I frequently fail to do that. Significantly, I generally know when I have done it wrong (typically a little before in a dread realization that just makes things worse) and adapt fairly seamlessly on the fly so, on the whole, you probably wouldn’t even notice it has happened, but I play much like ChatGPT responds to prompts: I fill in the things I don’t know with something more or less plausible. These creative adaptations are no more hallucinations than the false outputs of LLMs.

The fact that perfect recall is so difficult to achieve is why we need physical prostheses, to write things down, to look things up, or to automate them. Given LLMs’ weaknesses in accurate recall, it is slightly ironic that we often rely on computers for that.  It is, though, considerably more difficult for an LLM to do this because they have no big pictures, no purposes, no plans, not even broad intentions. They don’t know whether what they are churning out is right or wrong, so they don’t know to correct it. In fact, they don’t even know what they are saying, period. There’s no reflection, no metacognition, no layers of introspection, no sense of self, nothing to connect concepts together, no reason for them to correct errors that they cannot perceive.

Things that make us smart

How difficult can it be to fix this? I think we will soon be seeing a lot more solutions to this problem because if we can look stuff up then so can machines, and more reliable information from other systems can be used to feed the input or improve the output of the LLM (Bing, for instance, has been doing so for a while now, to an extent). A much more intriguing possibility is that an LLM itself or subsystem of it might not only look things up but also write and/or sequester code it needs to do things it is currently incapable of doing, extending its own capacity by assembling and remixing higher-level cognitive structures. Add a bit of layering then throw in an evolutionary algorithm to kill of the less viable or effective, and you’ve got a machine that can almost intentionally learn, and know when it has made a mistake.

Such abilities are a critical part of what makes humans smart, too. When discussing neural networks it is a bit too easy to focus on the underlying neural correlates of learning without paying much (if any) heed to the complex emergent structures that result from them – the “stuff” of thought – but those structures are the main things that make it work for humans. Like the training sets for large language models, the intelligence of humans is largely built from the knowledge gained from other humans through language, pedagogies, writing, drawing, music, computers, and other mediating technologies. Like an LLM, the cognitive technologies that result from this (including songs) are parts that we assemble and remix to in order to analyze, synthesize, and create. Unlike most if not all existing LLMs, though, the ways we assemble them – the methods of analysis, the rules of logic, the pedagogies, the algorithms, the principles, and so on (that we have also learned from others) – are cognitive prostheses that play an active role in the assembly, allowing us to build, invent, and use further cognitive prostheses and so to recursively extend our capabilities far beyond the training set, as well as to diagnose our own shortfalls. 

Like an LLM, our intelligence is also fundamentally collective, not just in what happens inside brains, but because our minds are extended, through tools, gadgets, rules, language, writing, structures, and systems that we enlist from the world as part of (not only adjuncts to) our thinking processes. Through technologies, from language to screwdrivers, we literally share our minds with others. For those of us who use them, LLMs are now as much parts of us as our own creative outputs are parts of them.

All of this means that human minds are part-technology (largely but not wholly instantiated in biological neural nets) and so our cognition is about as artificial as that of AIs. We could barely even think without cognitive prostheses like language, symbols, logic, and all the countless ways of doing and using technologies that we have devised, from guitars to cars. Education, in part, is a process of building and enlisting those cognitive prostheses in learners’ minds, and of enabling learners to build and enlist their own, in a massively complex, recursive, iterative, and distributed process, rich in feedback loops and self-organizing subsystems.

Choosing what we give up to the machine

There are many good ways to use LLMs in the learning process, as part of what students do. Just as it would be absurd to deny students the use of pens, books, computers, the Internet, and so on, it is absurd to deny them the use of AIs, including in summative assessments. These are now part of our cognitive apparatus, so we should learn how to participate in them wisely. But I think we need to be extremely cautious in choosing what we delegate to them, above all when using them to replace or augment some or all of the teaching role.

What makes AIs different from technologies of the past is that they perform a broadly similar process of cognitive assembly as we do ourselves, allowing us to offload much more of our cognition to an embodied collective intelligence created from the combined output of countless millions of people. Only months after the launch of ChatGPT, this is already profoundly changing how we learn and how we teach. It is disturbing and disruptive in an educational context for a number of reasons, such as that:

  • it may make it unnecessary for us to learn its skills ourselves, and so important aspects of our own cognition, not just things we don’t need (but which are they?), may atrophy;
  • if it teaches, it may embed biases from its training set and design (whose?) that we will inherit;
  • it may be a bland amalgam of what others have written, lacking originality or human quirks, and that is what we, too, will learn to do;
  • if we use it to teach, it may lead students towards an average or norm, not a peak;
  • it renders traditional forms of credentialling learning largely useless.

We need solutions to these problems or, at least, to understand how we will successfully adapt to the changes they bring, or whether we even want to do so. Right now, an LLM is not a mind at all, but it can be a functioning part of one, much as an artificial limb is a functioning part of a body or a cyborg prosthesis extends what a body can do. Whether we feel any particular limb that it (partly) replicates needs replacing, which system we should replace it with, and whether it is a a good idea in the first place are among the biggest questions we have to answer. But I think there’s an even bigger problem we need to solve: the nature of education itself.

AI teachers

There are no value-free technologies, at least insofar as they are enacted and brought into being through our participation in them, and the technologies that contribute to our cognition, such as teaching, are the most value-laden of all, communicating not just the knowledge and skills they purport to provide but also the ways of thinking and being that they embody. It is not just what they teach or how effectively they do so, but how they teach, and how we learn to think and behave as a result, that matters.

While AI teachers might well make it easier to learn to do and remember stuff, building hard cognitive technologies (technique, if you prefer) is not the only thing that education does. Through education, we learn values, ways of connecting, ways of thinking, and ways of being with others in the world. In the past this has come for free when we learn the other stuff, because real human teachers (including textbook authors, other students, etc) can’t help but model and transmit the tacit knowledge, values, and attitudes that go along with what they teach. This is largely why in-person lectures work. They are hopeless for learning the stuff being taught but the fact that students physically attend them makes them great for sharing attitudes, enthusiasm, bringing people together, letting us see how other people think through problems, how they react to ideas, etc. It is also why recordings of online lectures are much less successful because they don’t, albeit that the benefits of being able to repeat and rewind somewhat compensate for the losses.

What happens, though, when we all learn how to be human from something that is not (quite) human? The tacit curriculum – the stuff through which we learn ways of being, not just ways of doing –  for me looms largest among the problems we have to solve if we are to embed AIs in our educational systems, as indeed we must. Do we want our children to learn to be human from machines that haven’t quite figured out what that means and almost certainly never will?

Many AI-Ed acolytes tell the comforting story that we are just offloading some of our teaching to the machine, making teaching more personal, more responsive, cheaper, and more accessible to more people, freeing human teachers to do more of the human stuff. I get that: there is much to be said for making the acquisition of hard skills and knowledge easier, cheaper, and more efficient. However, it is local thinking writ large. It solves the problems that we have to solve today that are caused by how we have chosen to teach, with all the centuries-long path dependencies and counter technologies that entails, replacing technologies without wondering why they exist in the first place.

Perhaps the biggest of the problems that the entangled technologies of education systems cause are the devastating effects of tightly coupled credentials (and their cousins, grades) on intrinsic motivation. Much of the process of good teaching is one of reigniting that intrinsic motivation or, at least, supporting the development of internally regulated extrinsic motivation, and much of the process of bad teaching is about going with the flow and using threats and rewards to drive the process. As long as credentials remain the primary reason for learning, and as long as they remain based on proof of easily measured learning outcomes provided through end-products like assignments and inauthentic tests, then an AI that offers a faster, more efficient, and better tailored way of achieving them will crowd out the rest. Human teaching will be treated as a minor and largely irrelevant interruption or, at best, a feel-good ritual with motivational perks for those who can afford it. And, as we are already seeing, students coerced to meet deadlines and goals imposed on them will use AIs to take shortcuts. Why do it yourself when a machine can do it for you? 

The future

As we start to build AIs more like us, with metacognitive traits, self-set purposes, and the capacity for independent learning, the problem is just going to get bigger. Whether they are better or worse (they will be both), AIs will not be the same as us, yet they will increasingly seem so, and increasingly play human roles in the system. If the purpose of education is seen as nothing but short-term achievement of explicit learning outcomes and getting the credentials arising from that, then it would be better to let the machines achieve them so that we can get on with our lives. But of course that is not the purpose. Education is for preparing people to live better lives in better societies. It is why the picture of me singing above delights me more than anything ever created by an AI. It is why education is and must remain a fundamentally human process. Almost any human activity can be replaced by an AI, including teaching, but education is fundamental to how we become who we are. That’s not the kind of thing that I think we want to replace.

Our minds are already changing as they extend into the collective intelligence of LLMs – they must – and we are only at the very beginning of this story. Most of the changes that are about to occur will be mundane, complex, and the process will be punctuated but gradual, so we won’t really notice what has been happening until it has happened, by which time it may be too late. It is probably not an exaggeration to say that, unless environmental or other disasters don’t bring it all to a halt, this is a pivotal moment in our history.

It is much easier to think locally, to think about what AIs can do to support or extend what we do now, than it is to imagine how everything will change as a result of everyone doing that at scale. It requires us to think in systems, which is not something most of us are educated or prepared to do. But we must do that, now, while we still can. We should not leave it to AIs to do it for us.

There’s much more on many of the underpinning ideas mentioned in this post, including references and arguments supporting them, in my freely downloadable or cheap-to-purchase latest book (of three, as it happens), How Education Works.

Bob Dron, 1955-2023

Bob and Jon Dron, circa 1965
Me, my brother Bob, and my rabbit (I think its name was Easter Bunny) in our garden in Hamble, I guess around 1964 or thereabouts. I don’t know why Bob is standing in a basket.

My beautiful, witty, talented brother Bob died unexpectedly in his sleep a week ago today. He was 67. I still cannot find the words to express the loss. From the day I was born Bob was always there, and he remains a huge part of me. He was variously my role model, my confidante, my advisor (seldom a wise one), my entertainer, my friend, my co-conspirator, my collaborator, my flatmate, my burden, my rock, my protector, my teacher.  As a child, almost everything Bob ever did I had to do too, and anything Bob had I had to have too. There was barely a moment that mattered that didn’t have Bob in it. A thousand different vignettes play out in my mind every day, a thousand trivial and momentous moments, a thousand times he changed my life.

Bob walked gently on the world, often drifting a little to its side and sometimes not quite in it. That world is an emptier, sadder place without him.

A picture of a guitar as the seat of a swing, by Bob Dron
Swing Guitar, by Bob Dron, circa 1984. I started to play the guitar because of Bob. We used to jam a lot together and for a couple of years in the early 1980s we formed a duo, playing a weekly gig in a wine bar in Brighton, near to where we shared a flat. He drew this for my birthday because he never had any money to buy me anything. I still have that guitar.

 

The artificial curriculum

evolving into a robot “Shaping the Future of Education: Exploring the Potential and Consequences of AI and ChatGPT in Educational Settings” by Simone Grassini is a well-researched, concise but comprehensive overview of the state of play for generative AI (GAI) in education. It gives a very good overview of current uses, by faculty and students, and provides a thoughtful discussion of issues and concerns arising. It addresses technical, ethical, and pragmatic concerns across a broad spectrum. If you want a great summary of where we are now, with tons of research-informed suggestions as to what to do about it, this is a very worthwhile read.

However, underpinning much of the discussion is an implied (and I suspect unintentional) assumption that education is primarily concerned with achieving and measuring explicit specified outcomes. This is particularly obvious in the discussions of ways GAIs can “assist” with instruction. I have a problem with that.

There has been an increasing trend in recent decades towards the mechanization of education: modularizing rather than integrating, measuring what can be easily measured, creating efficiencies, focusing on an end goal of feeding industry, and so on. It has resulted in a classic case of the McNamara Fallacy, that starts with a laudable goal of measuring success, as much as we are able, and ends with that measure defining success, to the exclusion anything we do not or cannot measure. Learning becomes the achievement of measured outcomes.

It is true that consistent, measurable, hard techniques must be learned to achieve almost anything in life, and that it takes sustained effort and study to achieve most of them that educators can and should help with. Measurable learning outcomes and what we do with them matter. However, the more profound and, I believe, the more important ends of education, regardless of the subject, are concerned with ways of being in the world, with other humans. It is the tacit curriculum that ultimately matters more: how education affects the attitudes, the values, the ways we can adapt, how we can create, how we make connections, pursue our dreams, live fulfilling lives, engage with our fellow humans as parts of cultures and societies.

By definition, the tacit curriculum cannot be meaningfully expressed in learning outcomes or measured on a uniform scale. It can be expressed only obliquely, if it can be expressed at all, in words. It is largely emergent and relational, expressed in how we are, interacting with one another, not as measurable functions that describe what we can do. It is complex, situated, and idiosyncratic. It is about learning to be human, not achieving credentials.

Returning to the topic of AI, to learn to be human from a blurry JPEG of the web, or autotune for knowledge, especially given the fact that training sets will increasingly be trained on the output of earlier training sets, seems to me to be a very bad idea indeed.

The real difficulty that teachers face is not that students solve the problems set to them using large language models, but that in so doing they bypass the process, thus avoiding the tacit learning outcomes we cannot or choose not to measure. And the real difficulty that those students face is that, in delegating the teaching process to an AI, their teachers are bypassing the teaching process, thus failing to support the learning of those tacit outcomes or, at best, providing an averaged-out caricature of them. If we heedlessly continue along this path, it will wind up with machines teaching machines, with humans largely playing the roles of cogs and switches in them.

Some might argue that, if the machines do a good enough job of mimicry then it really doesn’t matter that they happen to be statistical models with no feelings, no intentions, no connection, and no agency. I disagree. Just as it makes a difference whether a painting ascribed to Picasso is a fake or not, or whether a letter is faxed or delivered through the post, or whether this particular guitar was played by John Lennon, it matters that real humans are on each side of a learning transaction. It means something different for an artifact to have been created by another human, even if the form of the exchange, in words or whatever, is the same. Current large language models have flaws, confidently spout falsehoods, fail to remember previous exchanges, and so on, so they are easy targets for criticism. However, I think it will be even worse when AIs are “better” teachers. When what they seem to be is endlessly tireless, patient, respectful and responsive; when the help they give is unerringly accurately personal and targeted; when they accurately draw on knowledge no one human could ever possess, they will not be modelling human behaviour. The best case scenario is that they will not be teaching students how to be, they will just be teaching them how to do, and that human teachers will provide the necessary tacit curriculum to support the human side of learning. However, the two are inseparable, so that is not particularly likely. The worst scenarios are that they will be teaching students how to be machines, or how to be an average human (with significant biases introduced by their training), or both.

And, frankly, if AIs are doing such a good job of it then they are the ones who should be doing whatever it is that they are training students to do, not the students. This will most certainly happen: it already is (witness the current actors and screenwriters strike). For all the disruption that results, it’s not necessarily a bad thing, because it increases the adjacent possible for everyone in so many ways. That’s why the illustration to this post is made to my instructions by Midjourney, not drawn by me. It does a much better job of it than I could do.

In a rational world we would not simply incorporate AI into teaching as we have always taught. It makes no more sense to let it replace teachers than it does to let it replace students. We really need to rethink what and why we are teaching in the first place. Unfortunately, such reinvention is rarely if ever how technology works. Technology evolves by assembly with and in the context of other technology, which is how come we have inherited mediaeval solutions to indoctrination as a fundamental mainstay of all modern education (there’s a lot more about such things in my book, How Education Works if you want to know more about that). The upshot will be that, as we integrate rather than reinvent, we will keep on doing what we have always done, with a few changes to topics, a few adjustments in how we assess, and a few “efficiencies”, but we will barely notice that everything has changed because students will still be achieving the same kinds of measured outcomes.

I am not much persuaded by most apocalyptic visions of the potential threat of AI. I don’t think that AI is particularly likely to lead to the world ending with a bang, though it is true that more powerful tools do make it more likely that evil people will wield them. Artificial General Intelligence, though, especially anything resembling consciousness, is very little closer today than it was 50 years ago and most attempts to achieve it are barking in the wrong forest, let alone up the wrong tree. The more likely and more troubling scenario is that, as it embraces GAIs but fails to change how everything is done, the world will end with a whimper, a blandification, a leisurely death like that of lobsters in water coming slowly to a boil. The sad thing is that, by then, with our continued focus on just those things we measure, we may not even notice it is happening. The sadder thing still is that, perhaps, it already is happening.

Originally posted at: https://landing.athabascau.ca/bookmarks/view/19390937/the-artificial-curriculum

Look what just arrived on my doorstep! #howeducationworks from @au_press is now available in print and e-book formats

Photo of hard copies of How Education Works

Hard copies and e-book versions of How Education Works are now available, and they are starting to turn up in bookstores. The recommended retail price is CAD$40 but Amazon is selling the Kindle version for a bit less.

Here are a few outlets that are selling it (or order it from your local independent bookstore!):

AU Press (CA)

Barnes & Noble (US)

Blackwells (UK)

Amazon (CA)

Amazon (JP)

University of Chicago Press (US)

Indigo (CA)

Booktopia (AU)

For those wanting to try before they buy or who cannot afford/do not want the paper or e-book versions, you can read it for free online, or download a PDF of the whole book.

The publishers see this as mainly targeted at professional teachers and educational researchers, but those are far from the only audiences I had in mind as I was writing it. Apart from anything else, one of the central claims of the book is that literally everyone is a teacher.  But it’s as much a book about the nature of technology as it is about education, and as much about the nature of knowledge as it is about how that knowledge is acquired. If you’re interested in how we come to know stuff, how technologies work, or how to think about what makes us (individually and collectively) smart, there’s something in the book for you. It’s a work of philosophy as much as it is a book of practical advice, and it’s about a way of thinking and being at least as much as it is about the formal practice of education. That said, it certainly does contain some ideas and recommendations that do have practical value for educators and educational researchers. There’s just more to it than that.

I cannot begin to express how pleased I am that, after more than 10 years of intermittent work, I finally have the finished article in my hands. I hope you get a chance to read it, in whatever format works for you! I’ll end this post with a quote, that happens to be the final paragraph of the book…

“If this book has helped you, however slightly, to think about what you know and how you have come to know it a little differently, then it has been a successful learning technology. In fact, even if you hold to all of your previous beliefs and this book has challenged you to defend them, then it has worked just fine too. Even if you disagreed with or misunderstood everything that I said, and even if you disliked the way that I presented it, it might still have been an effective learning technology, even though the learning that I hoped for did not come about. But I am not the one who matters the most here. This is layer upon layer of technology, and in some sense, for some technology, it has done what that technology should do. The book has conveyed words that, even if not understood as I intended them to be, even if not accepted, even if rabidly disagreed with, have done something for your learning. You are a different person now from the person you were when you started reading this book because everything that we do changes us. I do not know how it has changed you, but your mind is not the same as it was before, and ultimately the collectives in which you participate will not be the same either. The technology of print production, a spoken word, a pattern of pixels on a screen, or dots on a braille reader has, I hope, enabled you, at least on occasion, to think, criticize, acknowledge, recognize, synthesize, and react in ways that might have some value in consolidating or extending or even changing what you already know. As a result of bits and bytes flowing over an ether from my fingertips to whatever this page might be to you, knowledge (however obscure or counter to my intentions) has been created in the world, and learning has happened. For all the complexities and issues that emerge from that simple fact, one thing is absolutely certain: this is good.”

 

 

A decade of unwriting: the life history of "How Education Works"

How Education Works book coverAbout 10 years ago I submitted the first draft of a book called “How Learning Technologies Work” to AU Press. The title was a nod to David Byrne’s wonderful book, “How Music Works” which is about much more than just music, just as mine was about much more than learning technologies.

Pulling together ideas I had been thinking about for a few years, the book had taken me only a few months to write, mostly at the tail end of my sabbatical. I was quite pleased with it. The internal reviewers were positive too, though they suggested a number of sensible revisions, including clarifying some confusing arguments and a bit of restructuring. Also, in the interests of marketing, they recommended a change to the title because, though accurately describing the book’s contents, I was not using “learning technologies” in its mainstream sense at all (for me, poetry, pedagogies, and prayer are as much technologies as pots, potentiometers and practices), so it would appeal to only a small subset of its intended audience. They were also a bit concerned that it would be hard to find an audience for it even if it had a better title because it was at least as much a book about the nature of technology as it was a book about learning, so it would fall between two possible markets, potentially appealing to neither.

A few months later, I had written a new revision that addressed most of the reviewers’ recommendations and concerns, though it still lacked a good title. I could have submitted it then. However, in the process of disentangling those confusing arguments, I had realized that the soft/hard technology distinction on which much of the book rested was far less well-defined than I had imagined, and that some of the conclusions that I had drawn from it were just plain wrong. The more I thought about it, the less happy I felt.

And so began the first of a series of substantial rewrites. However, my teaching load was very high, and I had lots of other stuff to do, so progress was slow. I was still rewriting it when I unwisely became Chair of my department in 2016, which almost brought the whole project to a halt for another 3 years. Despite that, by the time my tenure as Chair ended, the book had grown to around double its original (not insubstantial) length, and the theory was starting to look coherent, though I had yet to make the final leap that made sense of it all.

By 2019, as I started another sabbatical, I had decided to split the book into two. I put the stuff that seemed useful for practitioners into a new book,  “Education: an owner’s manual”, leaving the explanatory and predictive theory in its own book, now grandiosely titled “How Education Works”, and worked on both simultaneously. Each grew to a few hundred pages.

Neither worked particularly well. It was really difficult to keep the theory out of the practical book, and the theoretical work was horribly dry without the stories and examples to make sense of it. The theory, though, at last made sense, albeit that I struggled (and failed) to give it a catchy name. The solution was infuriatingly obvious. In all my talks on the subject my catchphrase from the start had been “’tain’t what you do, it’s the way that you do it, that’s what gets results” (it’s the epigraph for the book), so it was always implicit that softness and hardness are not characteristics of all technologies, as such, nor even of their assemblies, but of the ways that we participate in their orchestration. Essentially, what matters is technique: the roles we play as parts of the orchestration or orchestrators of it. That’s where the magic happens.

But now I had two mediocre books that were going nowhere. Fearing I was about to wind up with two unfinished and/or unsellable books, about half way through my sabbatical I brutally slashed over half the chapters from both, pasted the remains together, and spent much of the time I had left filling in the cracks in the resulting bricolage.

I finally submitted “How Education Works: Teaching, Technology, and Technique” in the closing hours of 2020, accompanied by a new proposal because, though it shared a theme and a few words with the original, it was a very different book.

Along the way I had written over a million words, only around a tenth of which made it into what I sent to AU Press. I had spent the vast majority of my authoring time unwriting rather than writing the book and, with each word I wrote or unwrote, the book had written me, as much as I had written it. The book is as much a part of my cognition as a product of it.

And now, at last, it can be part of yours.

30 months after it was submitted – I won’t go into the reasons apart from to say it has been very frustrating –  the book is finally available as a free PDF download or to read on the Web. If all goes to plan, the paper and e-book versions should arrive June 27th, 2023, and can be pre-ordered now.

It is still a book about technology at least as much as it is about education (very broadly defined), albeit that it is now firmly situated in the latter. It has to be both because among the central points I’m making are that we are part-technology and technology is part-us, that cognition is (in part) technology and technology is (in part) cognition, and that education is a fundamentally technological and thus fundamentally human activity. It’s all one complex, hugely distributed, recursive intertwingularity in which we and our technological creations are all co-participants in the cognition and learning of ourselves and one another.

During the 30 months AU Press has had the book I have noticed a thousand different ways the book could be improved, and I don’t love all of the edits made to it along the way (by me and others), but I reckon it does what I want it to do, and 10 years is long enough.

It’s time to start another.

A few places you can buy the book

AU Press (CA)

Barnes & Noble (US)

Blackwells (UK)

Amazon (CA)

Amazon (JP)

University of Chicago Press (US)

Indigo (CA)

Booktopia (AU)

Technological distance – my slides from OTESSA ’23

Technological Distance

Here are the slides from my talk today at OTESSA ’23. Technological distance is a way of understanding distance that fits with modern complexivist models of learning such as Connectivism, Heutagogy, Networks/Communities of Practice/Rhizomatic Learning, and so on. In such a model, there are potentially thousands of distances – whether understood as psychological, transactional, social, cognitive, physical, temporal, or whatever – so conventional views of distance as a gap between learner and teacher (or institution or other students) are woefully inadequate.

I frame technological distance as a gap between technologies learners have (including cognitive gadgets, skills, techniques, etc as well as physical, organization, or procedural technologies) and those they need in order to learn. It is a little bit like Vygotsky’s Zone of Proximal Development but re-imagined and extended to incorporate all the many technologies, structures, and people who may be involved in the teaching gestalt.

The model of technology that I use to explain the idea is based on the coparticipation perspective presented in my book that, with luck, should be out within the next week or two. The talk ends with a brief discussion of the main implications for those whose job it is to teach.

Thanks to MidJourney for collaborating with me to produce the images used in the slides.

people as interlocking cogs

Can a technology be true?

Dave Cormier is a wonderfully sideways-thinking writer, such as in this recent discussion of the myth of learning styles. Dave’s post is not mainly about learning style theories, as such, but the nature and value of myth. As he puts it, myth is “a way we confront uncertainty” and the act of learning with others is, and must be, filled with uncertainty.

impression of someone with many learning stylesThe fact that stuff doesn’t have to be true to be useful plays an important role in my latest book, too, and I have an explanation for that. The way I see it is that learning style theories are (not metaphorically but actually) technologies, that orchestrate observations about differences in ways people learn, to attempt to explain and predict differences in the effects of different methods of teaching. Most importantly, they are generative: they say how things should and shouldn’t be done. As such, they are components that we can assemble with other technologies that help people to learn. In fact, that is the only way they can be used: they make no sense without an instantiation. What matters is therefore not whether they make sense, but whether they can play a useful role in the whole assembly. Truth or falsehood doesn’t come into it, any more than, except metaphorically, it does for a computer or a car (is a computer true?). It is true that, if the phenomena that you are orchestrating happen to be the findings and predictions of science (or logic, for that matter) then how they are used often does matter. If you are building a bridge then your really want your calculations about stresses and loads to be pretty much correct. On the other hand, people built bridges long before such calculations were possible. Similarly, bows and arrows evolved to be highly optimized – as good as or better than modern engineering could produce – despite false causal reasoning.  Learning styles are the same. You can use any number of objectively false or radically incomplete theories (and, given the many scores of such theories that have been developed, most of them are pretty much guaranteed to be one or both) but they can still result in better teaching.

For all that the whole is the only thing that really matters, sometimes the parts can be be positively harmful, to the point that they may render the whole harmful too. For instance, a pedagogy that involves physical violence or that uses threats/rewards of any kind (grades, say), will, at best, make it considerably harder to make the whole assembly work well. As Dave mentions, the same is true of telling people that they have a particular learning style. As long as you are just using the things to help to design or enact better learning experiences then they are quite harmless and might even be useful but, as soon as you tell learners they have a learning style then you have a whole lot of fixing to do.

If you are going to try to build a learning activity out of harmful parts then there must be other parts of the assembly that counter the harm. This is not unusual. The same is true of most if not all technologies. As Virilio put it, “when you invent the ship, you invent the shipwreck”. It’s the Faustian bargain that Postman spoke of: solving problems with a technology almost invariably creates new problems to be solved. This is part of the dynamic the leads to complexity in any technological system, from a jet engine to a bureaucracy. Technologies evolve to become more complex (partly) because we create counter-technologies to deal with the harm caused by them. You can take the bugs out of the machine, but the machine may, in assembly with others, itself be a bug, so the other parts must compensate for its limitations. It’s a dynamic process of reaching a metastable but never final state.

Unlike bows and arrows, there is no useful predictive science of teaching, though teaching can use scientific findings as parts of its assembly (at the very least because there are sciences of learning), just as there is no useful predictive science of art, though we can use scientific findings when making it. In both activities, we can also use stories, inventions, beliefs, values, and many other elements that have nothing to do with science or its findings. It can be done ‘badly’, in the sense of not conforming to whatever standards of perfection apply to any given technique that is part of the assembly, and it may still be a work of genius. What matters is whether the whole works out well.

At a more fundamental level, there can be no useful science of teaching (or of art) because the whole is non-ergodic. The number of possible states that could be visited vastly outnumber the number of states that can be visited by many, many orders of magnitude. Even if the universe were to continue for a trillion times the billions of years that it has already existed and it were a trillion times the size it seems to be now, they would almost certainly never repeat. What matters are the many, many acts of creation (including those of each individual learner) that constitute the whole.  And the whole constantly evolves, each part building on, interacting with, incorporating, or replacing what came before, creating both path dependencies and new adjacent possible empty niches that deform the evolutionary landscape for everything in it. This is, in fact, one of the reasons that learning style theories are so hard to validate. There are innumerable other parts of the assembly that matter, most of which depend on the soft technique of those creating or enacting them that varies every time, just as you have probably never written your signature in precisely the same way twice. The implementation of different ways of teaching according to assumed learning styles can be done better or worse, too, so the chances of finding consistent effects are very limited. Even if any are found in a limited set of use cases (say, memorizing facts for a SAT), they cannot usefully predict future effects for any other use case. In fact, even if there were statistically significant effects across multiple contexts it would tell us little or nothing of value for this inherently novel context. However, like almost all attempts to research whether students, on average, learn better with or without [insert technology of interest here], on average there will most likely be no significant difference, because so many other technologies matter as much or more. There is no useful predictive science of teaching, because teaching is an assembly of  technologies, and not only does the technique of an individual teacher matter, but also the soft technique of potentially thousands of other individuals who made contributions to the whole. It’s uncertain, and so we need myths to help make sense of our particular, never-to-be-repeated context. Truth doesn’t come into it.

View of Speculative Futures on ChatGPT and Generative Artificial Intelligence (AI): A Collective Reflection from the Educational Landscape

This is a remarkable paper, pubished in the Asian Journal of Distance Education, written by 35 remarkable people from all over the world and me. It was led by the remarkable Aras Boskurt, who pulled all 36 of us together and wrote much of it in the midst of personal tragedy and the aftermath of a devastating earthquake. The research methodology was fantastic: Aras got each of us to write two 500-word pieces of speculative fiction, presenting positive and negative futures for generative AI in education. The themes that emerged from them were then condensed in the conventional part of the paper, that we worked on together using Google Docs. It took less than 50 days from the initial invitation on January 22 to the publication of the paper. As Eamon Costello put it, “It felt like being in a flash mob of top scholars.”  At 130 pages it is more of a book than a paper,  but most of it consists of those stories/poems/plays, many of which are great stories in their own right. They make good bedtime reading.

Abstract

While ChatGPT has recently become very popular, AI has a long history and philosophy. This paper intends to explore the promises and pitfalls of the Generative Pre-trained Transformer (GPT) AI and potentially future technologies by adopting a speculative methodology. Speculative future narratives with a specific focus on educational contexts are provided in an attempt to identify emerging themes and discuss their implications for education in the 21st century. Affordances of (using) AI in Education (AIEd) and possible adverse effects are identified and discussed which emerge from the narratives. It is argued that now is the best of times to define human vs AI contribution to education because AI can accomplish more and more educational activities that used to be the prerogative of human educators. Therefore, it is imperative to rethink the respective roles of technology and human educators in education with a future-oriented mindset.

Citation

Bozkurt, A., Xiao, J., Lambert, S., Pazurek, A., Crompton, H., Koseoglu, S., Farrow, R., Bond, M., Nerantzi, C., Honeychurch, S., Bali, M., Dron, J., Mir, K., Stewart, B., Costello, E., Mason, J., Stracke, C. M., Romero-Hall, E., Koutropoulos, A., Toquero, C. M., Singh, L Tlili, A., Lee, K., Nichols, M., Ossiannilsson, E., Brown, M., Irvine, V., Raffaghelli, J. E., Santos-Hermosa, G Farrell, O., Adam, T., Thong, Y. L., Sani-Bozkurt, S., Sharma, R. C., Hrastinski, S., & Jandrić, P. (2023). Speculative futures on ChatGPT and generative artificial intelligence (AI): A collective reflection from the educational landscape. Asian Journal of Distance Education, 18(1), 53-130. https://doi.org/10.5281/zenodo.7636568

Originally posted at: https://landing.athabascau.ca/bookmarks/view/17699638/view-of-speculative-futures-on-chatgpt-and-generative-artificial-intelligence-ai-a-collective-reflection-from-the-educational-landscape

Technology, Teaching, and the Many Distances of Distance Learning | Journal of Open, Flexible and Distance Learning

I am pleased to announce my latest paper, published openly in the Journal of Open, Flexible and Distance Learning, which has long been one of my favourite distance and ed tech journals.

The paper starts with an abbreviated argument about the technological nature of education drawn from my forthcoming book, How Education Works, zooming in on the distributed teaching aspect of that, leading to a conclusion that the notion of “distance” as a measure of the relationship between a learner and their teacher/institution is not very useful when there might be countless teachers at countless distances involved.

I go on to explore a number of alternative ways we might conceptualize distance, some familiar, some less so, not so much because I think they are any better than (say) transactional distance, but to draw attention to the complexity, fuzziness, and fragility of the concept. However, I find some of them quite appealing: I am particularly pleased with the idea of inverting the various presences in the Community of Inquiry model (and extensions of it). Teaching, cognitive, and social (and emotional and agency) distances and presences essentially measure the same things in the same way, but the shift in perspective subtly changes the narratives we might build around them. I could probably write a paper on each kind of distance I provide, but each gets a paragraph or two because what it is all leading towards is an idea that I think has some more useful legs: technological distance.

I’m still developing this idea, and have just submitted another paper that tries to unpack it a bit more, so don’t expect something fully-formed just yet – I welcome discussion and debate on its value, meaning, and usefulness. Basically, technological distance is a measure of the gaps left between the technologies (including cognitive tools in learners’ own minds, what teachers orchestrate, textbooks, digital tools, etc, etc) that the learner has to fill in order to learn something. This is not just about the subject matter – it’s about the mill (how we learn) well as the grist (what we learn). There are lots of ways to reduce that distance, many of which are good for learning, but some of which undermine it by effectively providing what Dave Cormier delightfully describes as autotune for knowledge. The technologies provide the knowledge so learners don’t have to engage with or connect it themselves. This is not always a bad thing – architects may not need drafting skills, for instance, if they are going to only ever use CAD, memorization of facts easily discovered might not always be essential, and we will most likely see ubiquitous generative AI as part of our toolset now and in the future, for instance – but choosing what to learn is one reason teachers (who/whatever they are) can be useful. Effective teaching is about making the right things soft so the process itself teaches. However, as what needs to be soft is different for every person on the planet, we need to make learning (of ourselves or others) visible in order to know that. It’s not science – it’s technology. That means that invention, surprise, creativity, passion, and many other situated things matter.

My paper is nicely juxtaposed in the journal with one from Simon Paul Atkinson, which addresses definitions of “open”, “distance” and “flexible” that, funnily enough, was my first idea for a topic when I was invited to submit my paper. If you read both, I think you’ll see that Simon and I might see the issue quite differently, but his is a fine paper making some excellent points.

Abstract

The “distance” in “distance learning”, however it is defined, normally refers to a gap between a learner and their teacher(s), typically in a formal context. In this paper I take a slightly different view. The paper begins with an argument that teaching is fundamentally a technological process. It is, though, a vastly complex, massively distributed technology in which the most important parts are enacted idiosyncratically by vast numbers of people, both present and distant in time and space, who not only use technologies but also participate creatively in their enactment. Through the techniques we use we are co-participants in not just technologies but the learning of ourselves and others, and hence in the collective intelligence of those around us and, ultimately, that of our species. We are all teachers. There is therefore not one distance between learner and teacher in any act of deliberate learning— but many. I go on to speculate on alternative ways of understanding distance in terms of the physical, temporal, structural, agency, social, emotional, cognitive, cultural, pedagogical, and technological gaps that may exist between learners and their many teachers. And I conclude with some broad suggestions about ways to reduce these many distances.

Reference

Originally posted at: https://landing.athabascau.ca/bookmarks/view/17293757/my-latest-paper-technology-teaching-and-the-many-distances-of-distance-learning-journal-of-open-flexible-and-distance-learning

Athabasca University’s major unions condemn the sacking of Peter Scott. Meanwhile….

The undergraduate students union, Canadian Union of Public Employees, and Athabasca University professional and faculty association have now all come out with strongly worded public statements protesting the recent firing of Peter Scott and the process used to pick and hire the new president of AU. Here they are:

AUSU commentary

CUPE commentary

AUFA press release

Well done to all three unions for bringing this to the public eye.

a politician and a lawyer Meanwhile, the minister for advanced education has, quite bizarrely, denied that he or his government influenced the board’s decision.

Words fail me.

We may never know for certain whether this is not an outrageous lie. Perhaps the minister had amnesia, or was drugged; perhaps space aliens took the minister’s form to approach the board chair; maybe it was Russians using technology to imitate his voice on the phone; maybe he is a pawn in someone else’s game, some shady figure who is really calling all the shots; perhaps his mind has decayed to the point that he was entirely unconscious of his influence; maybe he just muttered “who will rid me of this troublesome president” under his breath without realizing he was within earshot of Byron Nelson. We may never know.

However, the fact that he fired the incumbents then hired a board chair and board majority composed entirely of his friends and cronies, only one of whom knew the faintest thing about education, clashed publicly with Peter Scott, and threatened the university with bankruptcy if his demands were not met casts a small shadow of doubt over not just the truthfulness but even the truthiness of his statement. On the other hand, politicians never lie, so there’s that.

On the subject of non-liars, Byron Nelson, chair of the Board, Calgary-based lawyer, and failed far-right politician (do read this article – it’s good), has helpfully explained a little (though not a lot) about how this came about.

Mr. Nelson conceded not all governors had registered their vote before the outcome was determined.
“The way that this was conducted, while legal, I would acknowledge was not best practices,” said Mr. Nelson, who is a lawyer. “It wasn’t best practices and it couldn’t be best practices.”
The process was less than ideal because the situation was “unique” and required an “extreme amount of confidentiality,” Mr. Nelson said.

Why? Seriously, why? Nelson quite accurately claims:

“This was not a close vote,” he said. “It was the overwhelming decision of the board.”

It probably was an overwhelming decision, given the fact that Nicolaides’s appointed cronies overwhelm the board, and that they were effectively the only ones voting. The rest of the board – representatives of faculty, tutors and students – did not have a chance to vote, and at least a portion of the couple who did vote, at least weeks after the new president had been recruited and on the day of the firing, were forced to abstain because of the complete lack of consultation or explanation.

Back to Nicolaides:

Demetrios Nicolaides, Alberta’s Advanced Education Minister, said in a statement said it was his understanding that bylaws were followed, but any board members who feel the rules were breached should raise the issue with the chair.

“I’m confident if there are any issues that the board can adequately resolve them.”

One has to wonder where this non-interfering politician gets his confidence. Perhaps he has been consulting with a lawyer.

If you are bothered by this appalling political interference and have not already signed the international petition condemning it, please do.